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One-Bit DoA Estimation for Deterministic Signals
Based on `2,1-Norm Minimization

Abstract— One-bit direction of arrival (DoA) estimation has
drawn considerable attention in recent years with the increasing
demand for low power consumption and high sampling rate. In
this work, the one-bit DoA estimation for deterministic signals is
addressed from the viewpoint of sparse matrix recovery. First, using
maximum likelihood (ML) and compressive sensing techniques, one-
bit DoA estimation is formulated as an ML-based row sparse ma-
trix optimization in terms of least-absolute-shrinkage-and-selection-
operator form with a `2,1 regularization. After that, by complex-
valued conjugate gradient and steepest descent operations, an
iterative closed-form solution in the form of row sparse matrix
is expected to be obtained. At last, the estimates of source number
and DoAs are simultaneously completed by making sense of the
structure of the row sparse matrix. Numerical results showcase that
the proposed algorithm outperforms the state-of-the-art approaches
in terms of estimation accuracy.

Index Terms— One-bit quantization, sparse matrix recovery,
direction of arrival (DoA) estimation, deterministic signals, `2,1-
norm.

I. INTRODUCTION

DIRECTION of arrival (DoA) estimation using one-
bit analog-to-digital converters (ADCs), namely, one-bit
DoA estimation, has garnered substantial attention owing
to its inherent advantages, such as remarkably low manu-
facturing costs, less energy consumption, efficient data
transmission, and minimal data storage requirement in
practical systems, which turns out to be a very promising
technique for unmanned aerial vehicle (UAV) applica-
tions [1]–[3]. However, the highly nonlinear relation-
ship between the source signal and the received signal
caused by one-bit quantization brings new challenges to
DoA estimation [4]. To tackle this issue, recent research
has predominantly focused on two distinct categories of
methods, i.e., subspace-based approaches and compressed

This work was supported in part by the National Science Fund for
Distinguished Young Scholars under Grant 61925108, the Key Project
of International Cooperation and Exchanges of the National Natural
Science Foundation of China under Grant 62220106009, the project of
Shenzhen Peacock Plan Teams under Grant KQTD20210811090051046,
Shenzhen University 2035 Program for Excellent Research, the National
Natural Science Foundation of China under Grant 62371306, and
Guangdong Basic and Applied Basic Research Foundation under Grant
2021A1515011855. (Corresponding author: Qiang Li; Lei Huang).

M. Chen, Q. Li, X. P. Li are with the College of Electronics and Infor-
mation Engineering, Shenzhen University, Shenzhen 518060, China (e-
mail: mychencn@139.com). L. Huang is with the State Key Laboratory
of Radio Frequency Heterogeneous Integration (Shenzhen University),
Shenzhen 518060, China (e-mail: lhuang@szu.edu.cn). M. Rihan is
with the Department of Communications Engineering, University of
Bremen, Bremen 28359, Germany. He is on leave from the Department
of Communication Engineering, Faculty of Electronic Engineering,
Menoufia University, Al-Menoufia, Egypt.

0018-9251 © 2020 IEEE

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020 1

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3348084

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on January 02,2024 at 01:47:15 UTC from IEEE Xplore.  Restrictions apply. 



sensing (CS)-based techniques. Each holds its unique
strengths and limitations.

Subspace-based methods rely on the Arcsine Law, dis-
covered by Van-Vleck [5] and then extended to complex-
valued signals by Jacovitti and Neri [6], which plays
a crucial role in establishing the link between the un-
quantized data and the one-bit data regarding the auto-
correlation function. By leveraging the Arcsine Law, re-
searchers introduce the one-bit conventional beamformer
(CBF) and the one-bit minimum variance distortionless
response (MVDR) [7]. Subsequently, in the context of
the uniform linear array (ULA) or the sparse linear array
(SLA), the one-bit DoA estimation is addressed using
multiple signal classification (MUSIC) based algorithms
[8]–[10]. These approaches represent significant advance-
ments, as the underlying principles of subspace techniques
are utilized for improving accuracy. It is worth pointing
out that they need the prior knowledge of the source
number, while the classical estimators for this information
(e.g., [11] and [12]) are not suitable in the one-bit
case in a direct manner [13]. Moreover, the subspace-
based methods require a substantial number of snapshots,
especially in the case of one-bit quantization.

The conventional CS-based DoA estimation, formu-
lated as sparse recovery, offers several advantages, includ-
ing the few data samples, the low sensitivity to the signal-
to-noise ratio (SNR), and the ability to handle highly
correlated and coherent sources [14]. Extensive research
has been devoted to CS-based one-bit DoA estimation
methods, resulting in various algorithms. The complex-
valued binary iterative hard thresholding (CBIHT) [15],
improved CBIHT (iCBIHT) [16], atomic norm denoising
(AND) [17], among others, emerge as effective tech-
niques by capitalizing on the consistency property. The
consistency property ensures that one-bit measurement
preserves the same sign information as the corresponding
unquantized measurement with high probability. Besides,
with the aid of the Bayesian framework, generalized
sparse Bayesian learning (Gr-SBL) [18] and off-grid iter-
ative reweighted (OGIR) [4] are proposed. Furthermore,
researchers address the challenges posed by non-uniform
noise in one-bit DoA estimation by employing the robust
sparse covariance fitting technique [19].

In this article, inspired by the likelihood-based esti-
mation of sparse parameters (LIKES), which is a grid-
based method using the maximum likelihood (ML) prin-
ciple [20], we introduce a novel approach for one-bit
DoA estimation of deterministic signals. The proposed
method combines the strengths of ML estimation and
CS, resulting in a powerful technique for the estimation
of source number and DoAs. The main contributions are
summarized as follows.

1) The ML technique is used to tackle the one-bit DoA
estimation for deterministic signals.

2) Considering the angles of target signals have a spa-
tial sparse property, an ML-based objective function
with `2,1-norm regularization is formulated, where

the complex-valued conjugate gradient descent tech-
nique is employed to find a suitable solution with
row sparsity.

Notations: We denote vectors and matrices by bold-
face lower case and upper case letters, respectively. The
operations (·)H , (·)T , (·)∗, � and | · | represent conjugate
transpose, transpose, conjugate, Hadamard product, and
absolute value, respectively. The sets R and C are real-
valued and complex-valued sets, respectively. Besides, Ai

and aij represent the i-th row vector and (i, j) entry
of a matrix A, respectively. Real and imaginary parts
are denoted as <[·] and =[·]. The diag(a) represents a
diagonal matrix whose diagonal entries are equal to the
elements of a. The  =

√
−1 stands for the imaginary

unit. The M ×M identity matrix is denoted by IM . The
Gaussian distribution with mean a and covariance matrix
A is denoted by N (a,A). In addition, ‖ · ‖2 is the `2-
norm, while ‖A‖r,p is the `r,p-norm [21], defined as

‖A‖r,p =

 m∑
i=1

(
n∑

j=1

|aij |r
) p

r

 1
p

, (1)

where `2,1-norm is a special case of the `r,p-norm.

II. ONE-BIT SIGNAL MODEL

In this work, K far-field narrowband signals are
assumed to impinge on a ULA consisting of M (M > K)
isotropic sensors. The DoAs of these signals are repre-
sented by the vector θ = [θ1, θ2, · · · , θK ]T , where θk ∈
[−90◦, 90◦] for k = 1, 2, · · · ,K. Before quantization, the
observation vector at the n-th snapshot can be expressed
as

x(n) = Ãs(n) + ε(n), n = 1, 2, · · · , N, (2)

where s(n) = [s1(n), s2(n), · · · , sK(n)]T ∈ CK , ε(n) =
[ε1(n), ε2(n), · · · , εM (n)]T ∈ CM , N are the determin-
istic but unknown signal waveforms, the additive noise,
the number of snapshots, respectively. Additionally, we
assume that ε(n) follows a zero-mean complex circu-
lar Gaussian distribution with covariance matrix σ2IM ,
which is temporally and spatially uncorrelated with the
signals. Moreover, the noise vector is independent iden-
tically distributed (i.i.d.), ensuring uncorrelated noise
across time and space. Besides, Ã ∈ CM×K denotes
array manifold matrix which is of the form Ã =
[a(θ1),a(θ2), · · · ,a(θK)] with a(θk) being the steering
vector

a(θk) = [1, e
2πd
ν

sin θk , · · · , e
2π(M−1)d

ν
sin θk ]T , θk ∈ θ, (3)

where ν is the carrier wavelength and d = ν/2 is the
inter-element spacing.

In addition, the SNR of the k-th source signal [22] is
defined as

SNRk = 10 log10


N∑

n=1

|sk(n)|2

Nσ2

 , (4)
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where sk(n) denotes the k-th entry of s(n).
When one-bit ADCs are employed, the one-bit mea-

surement vector is given as
y(n) = sgn (< [x(n)]) + sgn (= [x(n)]) , (5)

where sgn (·) represents an element-wise sign function,
that is

sgn(x) =

{−1, x < 0,

1, x ≥ 0.
(6)

In this work, the aim is to estimate the DoAs θ and
the number of sources K, from the one-bit measurements
Y = [y(1),y(2), · · · ,y(N)].

III. PROPOSED METHOD

A. One-Bit ML Formulation

Based on the assumption of the additive noise ε(n) in
the section II, both the real and imaginary parts of the un-
quantized observation x(n) follow Gaussian distributions,
which are denoted as <[x(n)] ∼ N (<[Ãs(n)], σ2/2IM )
and =[x(n)] ∼ N (=[Ãs(n)], σ2/2IM ), respectively. Sub-
sequently, the one-bit measurement y(n) follows the
multivariate discrete distribution whose probability mass
function (PMF) can be calculated by performing multiple
integrals of the probability density function of <[x(n)]
and =[x(n)] with respect to <[x(n)] and =[x(n)], respec-
tively. The interval of integration is [−∞, 0] if any element
of <[y(n)] and =[y(n)] is equal to −1. Otherwise, it is
[0,∞]. As a result, the joint PMF can be given as

P (Y ;α) =

N∏
n=1

M∏
m=1

Φ

(
<[ymn]

√
2<[Ãms(n)]

σ

)
×Φ

(
=[ymn]

√
2=[Ãms(n)]

σ

)
,

(7)

where α = [θ, σ, s(1), · · · , s(N)]T and Φ(x) =
1/
√

2π
∫ x

−∞ e−t
2/2dt are the unknown parameter vector

and the cumulative distribution function of the standard
normal distribution, respectively.

Then, the log-likelihood function of the one-bit obser-
vations Y has the following form:

l(Y ;α)=

N∑
n=1

M∑
m=1

ln

(
Φ

(
<[ymn]

√
2<[Ãms(n)]

σ

))
+ ln

(
Φ

(
=[ymn]

√
2=[Ãms(n)]

σ

))
.

(8)

It is well known that ML estimators are widely recog-
nized for their desirable properties, such as consistency,
asymptotic efficiency, and asymptotic normality [20].
Given these attractive characteristics, the ML principle is
used in this work to obtain the estimates of θ. In practice,
the ML estimation is achieved by minimizing the negative
log-likelihood function in (8) over the parameter space,
that is

α̂ = arg min
α

N∑
n=1

M∑
m=1

f
(
<[ymn]<[Ãmz(n)]

)
+f
(
=[ymn]=[Ãmz(n)]

)
,

(9)

where z(n) ,
√

2s(n)/σ and f(x) , − ln(Φ(x)).
However, the optimization is quite challenging to

resolve due to the function l(Y ;α) is multi-modal with
respect to θ. Motivated by CS theory, we cast the resultant
complex optimization model into an ML-based sparse
matrix recovery problem.

B. ML-Based Sparse Matrix Recovery

The potential spatial region of the incident signals
is divided into a search grid of L (K � L), i.e.,
Θ = [φ1, φ2, · · · , φL]T , which results in an overcomplete
manifold dictionary A = [a(φ1),a(φ2), · · · ,a(φL)] ∈
CM×L. Accordingly, we construct a L× 1 column vector
u(n) which is an expanded version of z(n) and is defined
by

ul(n)=

{
zk(n) if φl = θk,

0 otherwise,
l=1, 2, · · ·, L, k=1, 2, · · ·,K, (10)

where ul(n) and zk(n) denote the l-th entry of u(n)
and the k-th entry of z(n), respectively. It is seen that
u(n) only contains K nonzero entries, whose locations
correspond to the true DoAs, and therefore its sparsity is
K.

With multiple data samples available, u(n), n =
1, 2, · · · , N are jointly sparse in the sense that they
share the same support. In other words, we can say that
U = [u(1), · · · ,u(N)] ∈ CL×N is row sparse in the
sense that it only contains K non-zero rows. Then, the
optimization in (9), from the perspective of sparse signal
reconstruction, can be solved by

Û = arg min
U
L(U) + λ‖U‖2,1, (11)

where L(U) is the likelihood term given as

L(U) =

N∑
n=1

M∑
m=1

f (<[ymn]<[Amu(n)])

+f (=[ymn]=[Amu(n)]) .

(12)

Actually, ‖U‖2,1 norm is a convex function [23], approx-
imating ‖U‖2,0 norm to enforce a row sparse solution. In
addition, λ > 0 is a regularization parameter to trade off
the fidelity of the likelihood term and the row sparsity of
matrix.

It is observed that the objective function in (11) is
convex, indicating that traditional tools, such as CVX
[24], can be utilized to solve it. However, the CVX
employs the interior point technique to handle such kind
of problems, and thus its computational complexity is
relatively high.

To address this issue, as an unconstrained optimiza-
tion, the problem in (11) can be solved via the steepest
descent method [25], that is

U r+1 = U r + η4U , (13)

where r, η, and 4U denote the r-th iteration, the step
size, and the steepest descent direction, respectively. The
convergence of our method using the conjugate gradient
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descent framework is guaranteed [25]. Furthermore, 4U
is the negative conjugate gradient of L(U) + λ‖U‖2,1,
which is derived as follows.

Actually, [26] has provided the derivatives of ‖U‖2,1
with respect to U ∗, i.e.,

∂‖U‖2,1
∂U ∗ =

1

2
DU , (14)

where D ∈ RL×L is a diagonal matrix related to ‖U l‖2,
l = 1, 2, · · · , L, i.e.,

D = diag

(
1

‖U1‖2
,

1

‖U2‖2
, · · · , 1

‖UL‖2

)
. (15)

When U l = 0, dll = 0 is a conjugate subgradient of
‖U‖2,1 with respect to U l [23].

Regarding the derivatives of L(U) with respect to U ∗,
we firstly take the partial derivative of L(U) with respect
to u∗

pq, that is

∂L(U)

∂u∗pq
=

N∑
n=1

M∑
m=1

f ′(<[ymn]<[Amu(n)])<[ymn]
∂<[Amu(n)]

∂u∗
pq

+f ′(=[ymn]=[Amu(n)])=[ymn]
∂=[Amu(n)]

∂u∗pq
,

(16)
where the derivative of f(x) is denoted as

f ′(x) = − 1√
2πΦ(x)

e−
x2

2 . (17)

Then, considering the identities <[Amu(n)] =
<[Am]<[u(n)] − =[Am]=[u(n)] and =[Amu(n)] =
<[Am]=[u(n)] + =[Am]<[u(n)], and using the
Wirtinger’s calculus [27], we have
∂<[Amu(n)]

∂u∗pq
=

1

2

∂<[Amu(n)]

∂<[upq]
+


2

∂<[Amu(n)]

∂=[upq]

=
1

2

∂<[Am]<[u(n)]

∂<[upq]
− 

2

∂=[Am]=[u(n)]

∂=[upq]

=
1

2

∂
L∑

j=1

<[amj ]<[ujn]

∂<[upq]
− 

2

∂
L∑

j=1

=[amj ]=[ujn]

∂=[upq]

=
1

2
<[amp]− 

2
=[amp] =

1

2
a∗mp.

(18)
Note that the last equality holds only when n = q.

Similarly, we have
∂=[Amu(n)]

∂u∗pq
=


2
a∗mp. (19)

Next, substituting (18) and (19) into (16), we obtain

∂L(U)

∂u∗pq
=

M∑
m=1

a∗mp

2
f ′ (<[ymn]<[Amu(n)])<[ymn]

+
a∗mp

2
f ′ (=[ymn]=[Amu(n)])=[ymn].

(20)

Finally, the conjugate gradient matrices ∂L(U)/∂U ∗

can be derived as
∂L(U)

∂U∗
=

1

2
AHf ′ (<[Y ]�<[AU ])�<[Y ]

+


2
AHf ′ (=[Y ]�=[AU ])�=[Y ].

(21)

Combining (14) and (21), we can obtain the steepest
descent direction

4U=− 1

2
AHf ′ (<[Y ]�<[AU ])�<[Y ]

− 
2
AHf ′ (=[Y ]�=[AU ])�=[Y ]−λ

2
DU .

(22)

After R iterations, the solution Û is obtained, and
then the normalized spatial power spectral (NSPS) p(l) is
calculated using the following expression

p(l) =
‖Û l‖22

max
l=1,2,··· ,L

‖Û l‖22
, l = 1, 2, · · · , L. (23)

Subsequently, the DoAs of the source signals can be
determined by identifying the peaks corresponding to p(l).
The location of peaks in p(l) indicates the directions from
which the signals originate. Therefore, the number of
peaks corresponds to the estimated number of source sig-
nals. Because the noise may generate peaks corresponding
to many false alarms with small magnitude, we set a
threshold, half of the maximum peak of NSPS, to filter
these peaks. Certainly, there are alternative choices for
thresholding, including adaptive methods, which is be-
yond the scope of this work. The procedure is summarized
in Algorithm 1.

Algorithm 1: One-bit ML based sparse matrix recovery

Input: One-bit observation Y , number of antennas M ,
number of grids L, number of iterations R, and step
size η.
Step 1. r = 0, the elements of Θ are L values uni-
formly sampled from −90◦ to 90◦, and U0 ∈ CL×N ←
a random matrix.
for r = 1, 2, · · · , R do

Step 2. Determine 4U by (22).
Step 3. Update U r+1 by (13).

end for
Step 4. Calculate NSPS by (23) and then obtain θ̂ and
K̂ by finding and counting the peaks of NSPS.

Output: θ̂, K̂.

The computational complexity (CC) of the proposed
method mainly comes from the update of (13). In each
iteration, the CC of (14) is O(LN), which is because
that the CC of the calculation of diagonal matrix D is
O(LN), and the CC of DU is also O(LN). Additionally,
the CC of (21) is O(MLN), mainly coming from the
calculation of AU . As a result, the total CC of our
method is O(RMLN), where R represents the number
of iterations.

IV. SIMULATION RESULTS

In this simulation, a ULA comprising M = 15 anten-
nas with a half-wavelength inter-element spacing is con-
sidered. The ULA receives three signal waveforms from
distinct directions θ = [−33◦, 2◦, 23◦]T . These signal
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waveforms are represented as complex-valued exponential
signals, i.e., s(n) = [e/30n, e/6n, e4/15n]T . Besides, the
potential spatial region of the incident signals is set from
−90◦ to 90◦ and a uniform discretization with a grid size
of 0.1◦ over the spatial region is operated to obtain set
Θ, i.e., L = 1801. In the steepest descent method, the
size step η and the number of iterations R are set as 0.1
and 500. To evaluate the estimation performance, the root
mean square error (RMSE) of θ is adopted as the metric,
defined as

RMSE =

√√√√ 1

100K

100∑
j=1

K∑
k=1

(θk − θ̂j,k)2, (24)

where θ̂j,k is the estimate of the k-th DoA in the j-th
trial.

For comparison purposes, four existing algorithms are
evaluated, namely, One-bit MUSIC [9], AND [17], Gr-
SBL [18], and OGIR [4]. Additionally, the Cramer-Rao
Bound (CRB) [28, Eq.(18)], acted as the benchmark,
is included. In the following examples 1–4, the source
number is assumed to be known.

As mentioned earlier, the regularization parameter λ
governs the trade-off between the fidelity of the likelihood
term and the row sparsity of the matrix. A larger value of
λ results in a more row-sparse U . In contrast, a smaller
λ value leads to a less row-sparse U but results in a
better fitting of the likelihood term L(U). However, to
the best of our knowledge, determining a general rule
for selecting the appropriate regularization parameter in
DoA estimation remains an open issue [14]. In our work,
we provide a rule of thumb to guide the selection of
λ based on simulation results [25]. These simulations
provide valuable insights into the impact of different λ
values on the performance of the one-bit DoA estimation
under various scenarios.

Example 1: First, RMSE curves versus the regulariza-
tion parameter λ in the cases of different SNRs, are plot-
ted in Fig. 1, where the number of snapshots is set as 20.
It is obvious that the optimal regularization parameter is
sensitive to the SNRs especially at lower SNRs. To ensure
optimal performance under different SNR conditions, we
carefully select specific λ values for every SNR. Specif-
ically, we choose λ = 19, 20, 24, 24, 24, 24 corresponding
to the SNRs = −10,−6,−2, 2, 6, 10, respectively, for the
subsequent evaluation tests.

Example 2: Then, we examine the RMSE performance
of the proposed method and some existing methods in
terms of SNR. As shown in Fig. 2, it is evident that
the RMSEs of all tested methods decrease as the SNR
increases and the proposed method outperforms the other
algorithms in the tested SNR range. Besides, the other
examined approaches exhibit relatively similar and worse
estimation accuracy, particularly when SNR is lower than
−2 dB. The superiority of the proposed method becomes
more apparent as the SNR increases. When the SNR is
larger than 2 dB, the proposed method attains the CRB,

1 4 7 10 13 16 19 22 25 28 30

0.2

10
0

10
1

SNR = -10 dB

SNR = -6 dB

SNR = -2 dB

SNR = 2 dB

SNR = 6 dB

SNR = 10 dB

Fig. 1. RMSE versus regularization parameter λ for various SNRs.

-10 -6 -2 2 6 10
0.2

100

101 Proposed

CRB

One-bit MUSIC

AND

Gr-SBL

OGIR

Fig. 2. RMSE versus SNR.

which indicates that the proposed approach reaches the
theoretical lower bound of estimation accuracy.

Example 3: In this part, Fig. 3 reveals the RMSE
curves versus the regularization parameter λ under dif-
ferent numbers of snapshots, for SNR = 0 dB. It is seen
that when the number of snapshots is greater than 80, the
selection of λ has a slight effect on the RMSE. To obtain
the optimal λ corresponding to each tested number of
snapshots, the minimal value is identified on every curve.
It is worth noting that there is a consistent trend that as
the number of snapshots increases by 20, the approximate
optimal value of λ increases by 1. Consequently, λ is
set as 19 when the number of snapshots is 20, and then
each time that the number of snapshots grows by 20, λ
increases by 1 in the following evaluation.

Example 4: Finally, the RMSEs of all tested methods
mentioned above versus the number of snapshots are
investigated. The results are plotted in Fig. 4. It is seen
that the performance of the proposed method stands out
as superior to the other algorithms and the Gr-SBL is the
worst one. Moreover, the performance of the proposed
method closely approaches the CRB. This finding under-
scores the effectiveness of the proposed approach.

Example 5: To assess the performance of the proposed
method in terms of the source number estimation, we
examine the probability of success (PoS) versus SNR. The

CORRESPONDENCE 5

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3348084

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on January 02,2024 at 01:47:15 UTC from IEEE Xplore.  Restrictions apply. 



20 25 30 35 40 45 50 55 60
10-1

100

3.5
Snapshot = 20

Snapshot = 40

Snapshot = 60

Snapshot = 80

Snapshot = 100

Snapshot = 120

Fig. 3. RMSE versus regularization parameter λ for various numbers
of snapshots.
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Fig. 4. RMSE versus numbers of snapshots.

PoS is the ratio of successful tests to total tests. The test
is considered successful if the estimates of source number
K̂ equal the ground truth. Since either One-bit MUSIC or
AND requires the prior knowledge of the source number,
they are not tested in this example for comparison.

The tested results are plotted in Fig. 5. As expected,
the PoS of all methods increases with increasing SNR,
and the proposed method maintains the best performance
among all tested compared methods. Notably, our algo-
rithm reaches almost 100% in the case of SNR > 2 dB,
demonstrating its effectiveness in estimating the number
of sources.

V. CONCLUSION

In this paper, the one-bit DoA estimation for determin-
istic signal was studied. A novel method that integrates the
ML principle and sparse recovery technique was proposed
to estimate source number and DoAs simultaneously. The
numerical experiments demonstrated its superiority over
existing state-of-the-art one-bit approaches in terms of
estimation accuracy. Our method consistently had the
highest accuracy in a range of SNR and snapshot scenar-
ios. Moreover, the proposed method attained the CRB in
high SNR regimes and large snapshot scenarios, affirming
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Fig. 5. PoS versus SNR.

its effectiveness in approaching the theoretical lower
bound of estimation accuracy. One challenge in this work
involved the selection of the regularization parameter,
which requires careful consideration through simulation
experiments. To overcome this, we plan to develop a
hyperparameter-free approach in future research.
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