
Signal Processing 200 (2022) 108640 

Contents lists available at ScienceDirect 

Signal Processing 

journal homepage: www.elsevier.com/locate/sigpro 

An interpretable bi-branch neural network for matrix completion 

Xiao Peng Li a , 1 , Maolin Wang 

b , 1 , Hing Cheung So 

a , 2 , ∗

a Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China 
b School of Data Science, City University of Hong Kong, Hong Kong SAR, China 

a r t i c l e i n f o 

Article history: 

Received 29 December 2021 

Revised 27 April 2022 

Accepted 30 May 2022 

Available online 2 June 2022 

Keywords: 

Low rank 

Nonlinear matrix completion 

Neural network 

Image inpainting 

Recommender system 

a b s t r a c t 

The task of recovering a low-rank matrix given an incomplete matrix, also termed as matrix completion, 

arises in various applications. Methods for matrix completion can be classified into linear and nonlinear 

approaches. Despite the fact that the linear model provides basic theories ensuring restoring the missing 

entries with high probability, it has an obvious limitation that latent factors are restricted in the linear 

subspace. Thus, the nonlinear model has been suggested, which is mainly performed using neural net- 

works. In this paper, a novel and interpretable neural network is developed for matrix completion. Differ- 

ent from existing neural networks whose structure is created by empirical design, the proposed version 

is devised via unfolding the matrix factorization formulation. Specifically, the two factors decomposed by 

matrix factorization construct the two branches of the suggested neural network, called bi-branch neural 

network (BiBNN). The row and column indices of each entry are considered as the input of the BiBNN, 

while its output is the estimated value of the entry. The training procedure aims to minimize the fit- 

ting error between all observed entries and their predicted values and then the unknown entries are 

estimated by inputting their coordinates into the trained network. The BiBNN is compared with state-of- 

the-art methods, including linear and nonlinear models, in processing synthetic data, image inpainting, 

and recommender system. Experimental results demonstrate that the BiBNN is superior to the existing 

approaches in terms of restoration accuracy. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Matrix completion refers to predicting the unknown entries 

n an incomplete matrix using the low-rank property [1,2] and 

as been widely applied to various fields, such as image inpaint- 

ng [ 3,4,55 ], recommender system [5,6] , traffic sensing [7] , sys- 

em identification [8] , target estimation [ 56 ] and multi-label im- 

ge classification [9,10] . This is because lots of real-world data can 

e represented/approximated as low-rank matrices. For example, 

n recommender system, the user and item identity numbers are 

ormulated as row and column indices of the matrix. Besides, since 

 customer does not rate all products in general, the matrix is in- 

omplete. Moreover, the latent complete matrix is of low rank as 

he types of users and items are much less than the numbers of 

ustomers and products. 

Over the past few years, numerous algorithms for matrix com- 

letion have been proposed, which can be classified into two cat- 
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gories: linear [11–21] and nonlinear models [22–27] . The linear 

odel is the precursor and mainstay since it provides the basic 

heories that the missing entries of the incomplete matrix could 

e exactly restored with high probability under certain condi- 

ions [1,2] . In accordance with the linear model, matrix comple- 

ion is formulated as a rank minimization problem subject to the 

onstraint that the recovered entries are equal to the known ele- 

ents in the observation set [2] . Since minimizing rank function 

s an NP-hard problem, practical methods try to handle its sub- 

titute. One efficient strategy is to convert the rank function as a 

onstraint and then tackle the resultant problem. The representa- 

ive methods involve singular value projection (SVP) [12] , normal- 

zed iterative hard thresholding (NIHT) [13] and alternating pro- 

ection (AP) [14] . Both SVP and NIHT are designed for noise free 

r Gaussian noise cases, while AP is able to deal with the data 

ontaminated by impulsive noise. Since these approaches require 

omputing truncated singular value decomposition (SVD), the se- 

ection of rank is a critical issue for their performance. Another 

cheme is to replace the rank function with the nuclear norm 

hat has been proven being a convex envelop of the rank func- 

ion [28] . Based on the nuclear norm, various algorithms have 

een developed, including singular value thresholding (SVT) [15] , 

ccelerated proximal gradient (APG) [16] and fixed point contin- 

https://doi.org/10.1016/j.sigpro.2022.108640
http://www.ScienceDirect.com
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ation (FPC) [17] . Compared with the first strategy, the nuclear 

orm based methods need to perform full SVD and thus their 

omputational complexity is higher. In addition, since the nuclear 

orm is equivalent to the sum of all singular values, it is slack 

elaxation to adopt the nuclear norm instead of the rank func- 

ion, resulting in a seriously deviated solution from the ground 

ruth. To tackle this issue, truncated nuclear norm regularization 

TNNR) [18] suggests minimizing the remaining singular values 

fter subtracting the largest ones from all singular values. Be- 

ides, Gu et al. [19] propose a weighted nuclear norm that assigns 

ifferent weights to the whole singular values. Moreover, Schat- 

en p-norm with p ∈ (0 , 1] is developed to replace the nuclear

orm [29,30] . When p = 1 , Schatten p-norm is equal to the nu-

lear norm, while it becomes the strict envelope of the rank func- 

ion at p → 0 . It is worth noting that matrix completion schemes

ased on these improved norms still require computing SVD. Al- 

hough they do not need to set an appropriate rank, the rank of the 

bjective matrix is still affected by a user-defined regularization 

arameter. 

One prevalent way to circumvent the time-consuming SVD 

s to adopt matrix factorization technique which decomposes 

he objective matrix into two small-size matrices and then sub- 

titute their product for the large-size matrix. Based on the 

dea of the matrix factorization, subspace evolution and transfer 

SET) [31] , low-rank matrix fitting (LMaFit) [20] , alternating min- 

mization (AltMinComplete) [21] and proximal alternating mini- 

ization (PAM) [32] are developed. Compared with SET, LMaFit, 

nd AltMinComplete, PAM is able to converge to a second-order 

tationary point under some mild conditions with two randomly 

nitialized small-size matrices. The main challenge of this strat- 

gy is to select the best rank since the performance depends on 

he adopted rank. To deal with this issue, rank-one matrix pursu- 

ng technique is considered, including orthogonal rank-one matrix 

ursuit (OR1MP) [33] and economic OR1MP (EOR1MP) [34] , adap- 

ive basis selection strategy (ABSS) [35] and � 1 -norm regularized 

ank-one matrix completion (L1MC) [36] . Herein, the objective ma- 

rix is decomposed into a sum of rank-one matrices, and the num- 

er of rank-one matrices is determined by a user-defined accuracy 

hreshold. 

Although the linear model has achieved excellent performance 

n many applications, it has an obvious limitation that the latent 

actors are restricted in the linear subspace, resulting in a small 

easible region. The superiority of the nonlinear model over the 

inear one has been demonstrated in emotion recognition [24] , im- 

ge inpainting [26] , collaborative filtering [37] and multi-label and 

ulti-class classification [38] . One simple method for nonlinear 

atrix completion is to leverage a nonlinear kernel [23,24,39,40] , 

hich projects the data into a linear space via a nonlinear kernel 

nd then performs matrix completion in the linear space. Although 

his strategy is easy to implement, the adopted kernel needs to de- 

ign elaborately. 

Another technique is to utilize neural networks since the activa- 

ion function is able to represent the nonlinear relationship. Li and 

ang propose an adaptive and implicit regularization neural net- 

ork (AIR-Net) for nonlinear matrix completion [41] . Despite the 

ood performance of the AIR-Net on image inpainting in the ab- 

ence of noise, it can only handle square matrices, that is, its ap- 

licability is significantly restricted. Besides, Fan and Chow suggest 

n autoencoder based network where a series of autoencoders is 

rained sequentially using the observed entries and then all indi- 

idual autoencoders are stacked together as a deep autoencoder for 

redicting missing entries after fine-tuning [42] . Thereafter, an im- 

roved neural network, termed as deep matrix factorization (DMF), 

s developed [43] . Compared with the autoencoder based network, 

MF utilizes the matrix factorization scheme to design a deep 

eural network without the encoder procedure wherein the in- 
2 
ut and output are the low-dimensional unknown latent and par- 

ially known variables, respectively. It is well known that overfit- 

ing is a common issue for neural networks. To avoid this prob- 

em, Mercier and Uysal propose adopting Bayesian regularization 

nd early-stopping strategy to improve the neural network perfor- 

ance [44] . In addition, a one-layer neural network based on non- 

inear inductive matrix completion is suggested for recommender 

ystem where the predicted rating is modeled as an inner prod- 

ct of the two projected user and item feature vectors on the la- 

ent space [25] . Furthermore, it is verified that the neural network 

sing the low-rank property is more effective than general neu- 

al networks [25] . Moreover, patch-based nonlinear matrix comple- 

ion (PNMC) utilizes convolutional neural networks [26] via divid- 

ng the observed matrix into small-size patches. The small-patch 

trategy of the PNMC is shown to be able to efficiently exploit the 

ocality among adjacent entries, and reduce the size of the deep 

eural network. Convolutional neural tangent kernel (CNTK) devel- 

ps an infinite width neural network based on the tangent kernel 

nd achieves good performance on image inpainting in the noise- 

ess condition [45] . However, its memory cost is extremely high, 

.g., creating a kernel for processing a 349 × 366 matrix requires 

ore than 60 GiB memory. On the other hand, some works lever- 

ge graph theory to design neural networks for matrix completion 

ased recommender system [27,46–48] where users and items are 

epresented as graphs. 

Although the above-mentioned neural network based methods 

ttain satisfying performance, their network structures cannot be 

nterpreted, that is, the architecture is created by empirical design. 

or instance, the objective matrix is decomposed into two small- 

ize matrices in [42,43] , but the recovered matrix is still full rank. 

esides, AIR-Net, PNMC, and CNTK do not leverage the low-rank 

roperty and thus it is difficult to explain why they can recover 

he missing entries in theory. 

In this paper, we devise a bi-branch neural network using fully- 

onnected layers for nonlinear matrix completion and term it as 

iBNN. The BiBNN is designed exploiting matrix factorization un- 

olding in which one branch denotes a factorized component. In 

ddition, the dimensions of the last hidden layer are controlled to 

ttain the desired rank. Moreover, the processing target of the pro- 

osed neural network is individual entry instead of the entire in- 

omplete matrix. Specifically, one element and its coordinates are 

onsidered as the output and input of the BiBNN, respectively. As 

sual, the activation function between two successive hidden lay- 

rs is used to introduce nonlinearity. Our main contributions are 

ummarized as: 

1. We design a fully-connected neural network via unfolding ma- 

trix factorization formulation to address matrix completion 

such that the BiBNN can be interpreted. 

2. The computational and space complexities of the BiBNN are an- 

alyzed. In addition, we prove that the proposed neural network 

solving by gradient descent is convergent. 

3. The proposed BiBNN exhibits better performance than several 

state-of-the-art methods, including linear and nonlinear mod- 

els, in processing synthetic and real-world data, viz. images and 

recommender system. 

The manuscript is outlined as follows. In Section 2 , the ma- 

rix completion problem is formulated, and the matrix factoriza- 

ion scheme is reviewed. Besides, a similar neural network is intro- 

uced for comparing with our BiBNN. The BiBNN for matrix com- 

letion is derived in Section 3 . 

Empirical evaluation of the developed neural network using 

oth synthetic and real-world data is provided in Section 4 to 

emonstrate its superiority over seven existing approaches in 

erms of recovery accuracy. Finally, Section 5 provides concluding 

emarks. 
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. Problem formulation and related works 

.1. Matrix completion formulation 

Let X X X � ∈ R 

m ×n be an observed matrix with missing entries 

herein X X X � indicates that X X X projects on the binary matrix � ∈ 

 

m ×n , comprised of 0 and 1, which corresponds to unobserved and 

bserved elements, respectively, resulting in 

 X 

X X �) i, j = 

{
x i, j , if �i, j = 1 

0 , otherwise . 
(1) 

here ( X X X �) i, j is the (i, j) entry of X X X �. Conceptually, matrix com- 

letion is formulated as a rank minimization problem [2] 

in 

M 

rank ( M ) s.t. X � = M �, (2) 

hat is, the matrix completion aims to seek M 

M M ∈ R 

m ×n with the 

inimum rank under the condition that the elements of the re- 

tored and observed matrices in the observation set are equal. Un- 

ortunately, (2) is an NP-hard problem since the rank function is 

oth nonconvex and discrete. A feasible strategy is to substitute 

he rank function with the nuclear norm [12–14] , corresponding to 

he following optimization problem 

in 

M 

M M 

‖ M 

M M ‖ ∗ s.t. X 

X X � = M 

M M �, (3) 

here ‖ M 

M M ‖ ∗ is the nuclear norm which equals the sum of all sin-

ular values of M 

M M . Since SVD is performed in each iteration to 

olve (3) , the computational complexity is high, especially for big 

atrices. 

Another prevailing method is to exploit the matrix factoriza- 

ion technique which decomposes the objective matrix M 

M M into two 

mall-size matrices using the prior rank information, leading to 

in 

U U U , V V V 
‖ ( U 

U U V 

V V 

T ) � − X 

X X �‖ 

2 
F , (4) 

here (·) T signifies the transpose operator, ‖ · ‖ F denotes the 

robenius norm, U 

U U ∈ R 

m ×r and V V V ∈ R 

n ×r . Herein, r is the rank of 

he objective matrix. For the situation of unknown rank, we pro- 

ide a strategy to estimate its value, which is introduced in the 

ext section. Since (4) avoids computing SVD, the methods to han- 

le (4) have much lower computational complexity than those 

or (3) . After seeking U 

U U and V V V , the target matrix can be determined 

s M 

M M = U 

U U V V V T . 

.2. Previous works 

It is worth mentioning that a two-stream neural network has 

een developed for nonlinear matrix completion, termed as neural 

atrix completion (NMC) [49] . Its architecture is designed based 

n the following formulation 

 i, j = f ( r r r T i , c c c j ) , (5) 

here r r r T 
i 

∈ R 

m and c c c j ∈ R 

n represent the i th row and jth col-

mn of M 

M M , respectively. Specifically, r r r i and c c c j are the inputs of the 

wo branches of NMC, and the outputs of two streams are a a a i ∈ R 

r 

nd b b b j ∈ R 

r , respectively. The neural network structure of the two 

ranches consists of several fully-connected layers. Furthermore, 

he output of NMC neural network is m i, j , calculated by 

 i, j = 

a a a T 
i 
b b b j 

‖ a a a i ‖ 2 ‖ b b b j ‖ 2 

, (6) 

here ‖ · ‖ 2 denotes the � 2 -norm. The training data are all ob- 

erved entries x i, j with �i, j = 1 , and then x i, j with �i, j = 0 is pre-

icted by the trained neural network. Although its performance is 

atisfactory, it is difficult to explain why m i, j can be predicted us- 

ng r r r i and c c c j that are the i th row and jth column of the incomplete

atrix, respectively. 
3 
. Bi-Branch neural network 

In this section, we design the BiBNN using the unfolding 

ethod that unrolls an iterative optimization algorithm to a neural 

etwork hierarchical architecture. Moreover, the convergence and 

omplexity of the BiBNN are discussed. 

.1. Structure design 

Prior to presenting the neural network, we introduce a set �

nvolving the coordinates of the known entries in X X X �, defined as 

= { (i, j) | �i, j = 1 } . (7) 

hen, we use � to reformulate (4) as scalar form: 

in 

U U U , V V V 

∑ 

(i, j) ∈ �

(
( U 

U U V 

V V 

T ) i, j − x i, j 

)
2 . (8) 

In accordance with the matrix multiplication, we know that the 

i, j) entry of U 

U U V V V T is equal to the product between the i th row of

 

 

 and jth row of V V V that are signified by u u u T 
i 

and v v v T 
i 

, respectively. By 

he representation of m i, j = u u u T 
i 
v v v j , (8) is re-expressed as 

in 

u u u i , v v v j 

∑ 

(i, j) ∈ �

(
m i, j − x i, j 

)
2 s.t. m i, j = u 

u u 

T 
i v v v j . (9) 

o clearly describe the network structure by making use of math- 

matical representation, we introduce two auxiliary parameters, 

amely, αααi ∈ R 

m with i ∈ [1 , m ] and βββ j ∈ R 

n with j ∈ [1 , n ] . As ba-

is vectors, only the i th and jth entries of αααi and βββ j are equal to 1,

hile the other elements are 0. In other words, αααi and βββ j indicate 

he location of m i, j in M 

M M . Employing αααi and βββ j , m i, j is rewritten as 

 i, j = ( U 

U U 

T αααi ) 
T ( V 

V V 

T βββ j ) . (10) 

hen, we plug (10) into (9) to obtain 

in 

U U U , V V V 

∑ 

(i, j) ∈ �

(
( U 

U U 

T αααi ) 
T ( V 

V V 

T βββ j ) − x i, j 

)
2 . (11) 

e first consider unfolding (11) to construct a one-hidden-layer 

inear BiBNN for matrix completion and then improve it for the 

onlinear model. For the linear BiBNN, U 

U U 

T αααi and V V V T βββ j are consid- 

red as two independent fully-connected layers. Herein, “indepen- 

ent” means that the two fully-connected layers do not share the 

eight matrix. Specifically, U 

U U 

T αααi is considered an input αααi multi- 

lied by a weight matrix U 

U U and then the output is u u u i = U 

U U 

T αααi . Simi- 

arly, V V V T βββ j is arranged as a fully-connected layer with input βββ j and 

utput v v v j = V V V T βββ j . Furthermore, the output of the linear BiBNN is 

omputed as m i, j = u u u T 
i 
v v v j , and the corresponding fitting target is the 

bserved x i, j . 

It is worth mentioning that the weight between the fully- 

onnected and output layers is a constant, namely, 1, due to m i, j = 

 

 

 

T 
i 
v v v j . 
It is well known that multiple-layer neural networks generally 

utperform the single-layer configurations. As an illustration, we 

urther decompose U 

U U and V V V for constructing a L -hidden-layer neu- 

al network as 

 

 

 = U 

U U 1 · · ·U 

U U l · · ·U 

U U L , (12) 

 

 

 = V 

V V 1 · · ·V 

V V l · · ·V 

V V L , (13) 

here U 

U U l ∈ R 

m l ×m l+1 and V V V l ∈ R 

n l ×n l+1 for l ∈ [1 , L ] with m 1 = m ,

 1 = n and m L +1 = n L +1 = r. Herein, m l and n l with l ∈ [2 , L ] are

he node numbers of the hidden layers. Based on this deep factor- 

zation model, we have 

 

 

 

T αααi = ( U 

U U 1 · · ·U 

U U l · · ·U 

U U L ) 
T αααi = U 

U U 

T 
L · · ·U 

U U 

T · · ·U 

U U 

T 
1 αααi , (14) 
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Fig. 1. Illustration of two-hidden-layer BiBNN architecture. 
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T βββ j = ( V 

V V 1 · · ·V 

V V l · · ·V 

V V L ) 
T βββ j = V 

V V 

T 
L · · ·V 

V V 

T 
l · · ·V 

V V 

T 
1 βββ j . (15) 

hen, plugging (14) and (15) into (11) results in 

min 

 l , V l ,l∈ [ 1 ,L ] 

∑ 

( i, j ) ∈ �

((
U 

T 
L U 

T 
L −1 · · ·U 

T 
1 αi 

)T (
V 

T 
L V 

T 
L −1 · · ·V 

T 
1 β j 

)
− x i, j 

)2 

. (16) 

owever, (16) and (11) are equivalent as (12) and (13) are linear 

ransforms. To proceed, as in typical neural networks, we insert a 

onlinear function between two layers, leading to 

min 
 

 

 l , V V V l ,l∈ [1 ,L ] 

∑ 

(i, j) ∈ �
(( U 

U U 

T 
L φ( U 

U U 

T 
L −1 · · ·φ( U 

U U 

T 
1 αααi ))) 

T ( V V V T L φ( V V V T L −1 · · ·φ( V V V T 1 βββ j ))) − x i, j ) 
2 ,

(17) 

here φ(·) is the nonlinear activation function. 

Similar to the linear BiBNN, U 

U U 

T 
L φ( U 

U U 

T 
L −1 · · ·φ( U 

U U 

T 
1 αααi )) and 

 

 

 

T 
L φ( V V V T L −1 · · ·φ( V V V T 1 βββ j )) are constructed as two independent 

ultiple-layer fully-connected neural networks that are consid- 

red as the two branches of the BiBNN. To be more specific, 

i is arranged as the input of the first hidden layer with the 

ctivation function in the first branch, and its output is φ( U 

U U 

T 
1 
αααi ) . 

hen, the input and output of the second hidden layer are set 

s φ( U 

U U 

T 
1 
αααi ) and φ( U 

U U 

T 
2 
φ( U 

U U 

T 
1 
αααi )) . Accordingly, for the lth hidden 

ayer with l ∈ [2 , L − 1] , its input is φ( U 

U U 

T 
l−1 

· · ·φ( U 

U U 

T 
1 αααi )) , while

ts output is φ( U 

U U 

T 
l 
φ( U 

U U 

T 
l−1 

· · ·φ( U 

U U 

T 
1 αααi ))) . Finally, the output of the 

rst branch is set as u u u i = U 

U U 

T 
L φ( U 

U U 

T 
L −1 · · ·φ( U 

U U 

T 
1 αααi )) . For the second 

ranch, the input of the first hidden layer is βββ j , while its output is

( V V V T 
1 
βββ j ) . Without loss of generality, for the lth hidden layer with 

 ∈ [2 , L − 1] , its input and output are φ( V V V T 
l−1 

· · ·φ( V V V T 1 βββ j )) and

( V V V T 
l 
φ( V V V T 

l−1 
· · ·φ( V V V T 1 βββ j ))) , respectively. The output of the second 

ranch is arranged as v v v j = V V V T 
L 
φ( V V V T 

L −1 
· · ·φ( V V V T 

1 
βββ j )) , and then the 

utput of the BiBNN is m i, j = u u u i v v v j . 
Training the neural network constructed by (17) is to update U 

U U l , 

 

 

 l with l ∈ [1 , L ] to minimize the objective function in (17) since

he weight matrices of the neural network are U 

U U l , V V V l with l ∈ 

1 , L ] . In addition, we define ̂ U 

U U = φ(φ( U 

U U 1 ) · · ·U 

U U L −1 ) U 

U U L and 

̂ V V V =
(φ( V V V 1 ) · · ·V V V L −1 ) V V V L . Comparing M 

M M = U 

U U V V V T and 

̂ M 

M M = ̂

 U 

U U ̂

 V V V 
T 

, although 

oth are of low rank, M 

M M is sought from the linear subspace, while ̂ 

 

 

 is computed in the nonlinear space. 

Fig. 1 illustrates the two-hidden-layer BiBNN architecture 

dopted in our experiments. We observe that it has two branches, 

nd each branch involves two hidden layers. Matrices on the lines 

orrespond to the weight matrices between two layers, while the 

ormulations in the rectangular blocks denote layers’ outputs. In 
4 
ddition, the circles indicate the activation function. In accordance 

ith the depicted BiBNN, we provide the pseudo code in Algo- 

ithm. 

lgorithm 1 BiBNN for matrix completion. 

equire: x i, j with (i, j) ∈ � and K max . 

Initialize: Initialize U 

U U 

1 
1 , U 

U U 

1 
2 , V V V 1 1 and V V V 1 2 in U(−0 . 5 , 0 . 5) . 

for k = 1 , 2 , · · · ,~K max do 

1. Update U 

U U 

k +1 
2 

with fixing U 

U U 

k 
1 
, V V V k 

1 
and V V V k 

2 
. 

2. Update U 

U U 

k +1 
1 

with fixing U 

U U 

k +1 
2 

, V V V k 
1 

and V V V k 
2 
. 

3. Update V V V k +1 
2 

with fixing U 

U U 

k +1 
2 

, U 

U U 

k +1 
1 

and V V V k 
1 
. 

4. Update V V V k +1 
1 

with fixing U 

U U 

k +1 
2 

, U 

U U 

k +1 
1 

and V V V k +1 
2 

. 

Stop if stopping criterion is met. 

end for 

nsure: ̂ M 

M M = (φ( U 

U U 1 ) U 

U U 2 )(φ( V V V 1 ) V V V 2 ) 
T . 

.2. Convergence analysis 

For concise expression, the convergent property is analyzed 

ased on a two-hidden-layer BiBNN. It is worth mentioning that 

he convergence analysis is applicable for BiBNN with more than 

wo hidden layers. 

According to the derivation of (17) , we have 

min 

U U U 1 , U U U 2 , V V V 1 , V V V 2 
‖ ((φ( U 

U U 1 ) U 

U U 2 )(φ( V 

V V 1 ) V 

V V 2 ) 
T ) � − X 

X X �‖ 

2 
F 

= min 

U U U 1 , U U U 2 , V V V 1 , V V V 2 
‖ ((φ( U 

U U 1 ) U 

U U 2 )(φ( V 

V V 1 ) V 

V V 2 ) 
T − X 

X X ) � �‖ 

2 
F , (18) 

here � is the entry-wise product. Besides, we define the loss 

unction of the objective function as 

 ( U 

U U 1 , U 

U U 2 , V 

V V 1 , V 

V V 2 ) = ‖ ((φ( U 

U U 1 ) U 

U U 2 )(φ( V 

V V 1 ) V 

V V 2 ) 
T − X 

X X ) � �‖ 

2 
F . (19) 

t is well known that neural networks are typically optimized us- 

ng the gradient descent method or its variants. Hence, we analyze 

onvergence based on the gradient descent, leading to the follow- 

ng procedure: 

 

 

 

k +1 
2 

= U 

U U 

k 
2 −λ

∂L ( U 

U U 

k 
1 
, U 

U U 

k 
2 
, V V V k 

1 
, V V V k 

2 
) 

∂ U 

U U 2 

= U 

U U 

k 
2 − 2 λφ( U 

U U 

k 
1 ) 

T (((φ( U 

U U 

k 
1 ) U 

U U 

k 
2 )(φ( V V V k 1 ) V V V k 2 ) 

T −X X X ) � �) φ( V V V k 1 ) V V V k 2 , 

(20) 

 

 

 

k +1 
1 = U 

U U 

k 
1 − λ

∂L ( U 

U U 

k 
1 , U 

U U 

k +1 
2 

, V V V k 1 , V V V k 2 ) 

∂ U 

U U 1 

= U 

U U 

k 
1 − 2 λ((((φ( U 

U U 

k 
1 ) U 

U U 

k +1 
2 )(φ( V V V k 1 ) V V V k 2 ) 

T − X X X ) � �) φ( V V V k 1 ) V V V k 2 ( U 

U U 

k +1 
2 ) T ) 

� φ′ ( U 

U U 

k 
1 ) , (21) 

 

 

 

k +1 
2 = V V V k 2 − λ

∂L ( U 

U U 

k +1 
1 

, U 

U U 

k +1 
2 

, V V V k 1 , V V V k 2 ) 

∂ V V V 2 

= V V V k 2 − 2 λφ( V V V k 1 ) 
T (((φ( U 

U U 

k +1 
1 ) U 

U U 

k +1 
2 )(φ( V V V k 1 ) V V V k 2 ) 

T − X X X ) 

� �) T φ( U 

U U 

k +1 
1 ) U 

U U 

k +1 
2 , (22) 

 

 

 

k +1 
1 = V 

V V 

k 
1 − λ

∂L ( U 

U U 

k +1 
1 

, U 

U U 

k +1 
2 

, V 

V V 

k 
1 , V 

V V 

k +1 
2 

) 

∂ V 

V V 1 

= V 

V V 

k 
1 − 2 λ((((φ( U 

U U 

k +1 
1 ) U 

U U 

k +1 
2 )(φ( V 

V V 

k 
1 ) V 

V V 

k +1 
2 ) T − X 

X X ) 

� �) T φ( U 

U U 

k +1 
1 ) U 

U U 

k +1 
2 ( V 

V V 

k +1 
2 ) T ) � φ′ ( V 

V V 

k 
1 ) , (23) 

here λ > 0 is the learning rate parameter and φ′ (·) is the deriva- 

ive of φ(·) . It is worth pointing out that the optimization problem 

s nonconvex w.r.t U 

U U , U 

U U , V V V and V V V , but it is convex combined 
1 2 1 2 
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Table 1 

Comparison of different methods on synthetic data in Gaussian noise of 20dB. 

Method Proposed PAM MC-DMF MC-IALM NLMC PMC CNTK CNTK + 

MSE 0.0509 0.0712 0.0623 0.5955 0.0794 0.0854 0.2147 0.1513 
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ith a convex φ(·) w.r.t. one with fixing remaining variables. Be- 

ides, φ(·) can be nonconvex as local convexity is adequate to seek 

 local solution. Since (20) , (21) , (22) and (23) leverage the gra-

ient descent to update U 

U U 

k 
2 
, U 

U U 

k 
1 
, V V V k 

2 
and V V V k 

1 
, respectively, we can 

ttain the following inequality with an adequately small learning 

ate 

 ( U 

U U 

k 
1 , U 

U U 

k 
2 , V V V k 1 , V V V k 2 ) ≥ L ( U 

U U 

k 
1 , U 

U U 

k +1 
2 , V V V k 1 , V V V k 2 ) ≥ L ( U 

U U 

k +1 
1 , U 

U U 

k +1 
2 , V V V k 1 , V V V k 2 ) 

≥ L ( U 

U U 

k +1 
1 , U 

U U 

k +1 
2 , V V V k 1 , V V V k +1 

2 ) ≥ L ( U 

U U 

k +1 
1 , U 

U U 

k +1 
2 , V V V k +1 

1 , V V V k +1 
2 ) , ‘ 

(24) 

hat is, L ( U 

U U 

k 
1 
, U 

U U 

k 
2 
, V V V k 

1 
, V V V k 

2 
) updated by the gradient descent is non-

ncreasing. In addition, it is easy to know L ( U 

U U 

k 
1 
, U 

U U 

k 
2 
, V V V k 

1 
, V V V k 

2 
) ≥ 0 , in-

icating that the loss function has a lower bound. Thereby, the se- 

uence of the objective values {L ( U 

U U 

k 
1 
, U 

U U 

k 
2 
, V V V k 

1 
, V V V k 

2 
) } is convergent. 

.3. Complexity analysis 

We first analyze the space complexity. Consider a BiBNN net- 

ork with two hidden layers whose node numbers are q and r, re- 

pectively. The first branch requires storing mq + qr elements, and 

he entries of the second branch are nq + qr. Thereby, the total 

umber of entries is (m + n + 2 r) q , resulting in the space complex-

ty of O((m + n ) q ) due to r � min (m, n ) . 

Then the computational complexity is analyzed, including for- 

ard and backward propagation. For the forward propagation, the 

omplexity of computing one input is O((m + n )(r + 1) q ) . Thereby,

he total computational complexity for one epoch is O((m 

2 n + 

n 2 )(r + 1) qp) where p denotes the percentage of the observed 

ntries. On the other hand, the complexity of the backward prop- 

gation can be calculated according to (20) , (21) , (22) and (23) ,

pecifically O(mqr + nqr + mnr ) for (20) , O (mqr + nqr + mn (r + q )

or (21) , O(mqr + nqr + mnr) for (22) and O(mqr + nqr + mn (r +
 )) for (23) . As a result, the total computational complexity is 

(mn (r + q )) since O(mn ) dominates O(mq ) and O(nq ) . 

.4. Rank selection 

It is clear that the BiBNN performance is affected by the se- 

ected rank. If the true rank of the objective matrix is unknown, 

e suggest leveraging the cross-validation method to search for 

he best rank [50] . First, � is divided into two subsets such that 

1 + �2 = � and ‖ �1 ‖ 1 / ‖ �‖ 1 = 0 . 95 . Herein, ‖ �‖ 1 is the � 1 -

orm of �, which equals the number of observed entries in the 

ncomplete matrix. Then, X X X �1 
is adopted to train the BiBNN, while 

 

 

 �2 
is used to test the neural network. Given a rank, one BiBNN 

an be trained based on X X X �1 
, and the corresponding prediction er- 

or can be computed on X X X �2 
. After trying different ranks, the best 

ank is determined by the one with the smallest test error. 

.5. Data preprocessing 

Since the input data are not directly collected from the ob- 

erved matrix, preprocessing is required. Given an incomplete ma- 

rix X X X �, we extract all observed entries as well as compute the 

orresponding αααi and βββ j to attain the training dataset. Herein, one 

ntry, associating with its αααi and βββ j , are considered as a group of 

raining data. 
5 
. Experimental results 

The proposed BiBNN is compared with seven representa- 

ive methods, namely, PAM [32] , MC-DMF [43] , MC-IALM [11] , 

LMC [39] , PMC [40] , CNTK [45] and CNTK 

+ [45] . Our neural net-

ork is programmed using the PyTorch framework [51] , and im- 

lemented on a personal computer with Nvidia 2060 GPU. 

.1. Network setting 

For the adopted BiBNN in all experiments, the number of hid- 

en layers is two, and the activation function is selected as ex- 

onential linear unit (ELU). It is easy to know that the numbers 

f nodes in the output and last hidden layer are 1 and r, re-

pectively. Besides, the first hidden layer contains 50 + r nodes. 

he size of input layer is determined based on the dimensions 

f the observed matrix. Moreover, the loss function is based on 

he � 2 -norm. For the adopted neural network, according to (17) , 

t is 
∑ 

(i, j) ∈ �
(
( U 

U U 

T 
2 
φ( U 

U U 

T 
1 
αααi )) 

T ( V V V T 
2 
φ( V V V T 

1 
βββ j )) −x i, j 

)
2 , while the opti- 

ization solver is chosen as adaptive moment estimation function 

Adam) with learning rate of 0.01. Moreover, all training data are 

tilized for one epoch, and the number of epochs is set to 20 0 0. 

.2. Synthetic data 

We first test all methods on the synthetic data with a fixed 

ank. The noise-free complete matrix X X X is generated by the product 

f X X X 1 ∈ R 

150 ×15 and X X X 2 ∈ R 

15 ×160 whose entries obey independent 

tandard Gaussian normal distribution. Note that the dimensions 

f X X X are selected as 150 × 160 because the CNTK cannot process 

 matrix whose dimensions are larger than 200 × 200 on general 

Cs. It is clear that the true rank is 15. To approximate practical 

ingular value distribution, the i th singular value of X X X is set as 

 

10 −i with i ∈ [1 , 15] [34] . The binary matrix � consists of the same

umbers of 1 and 0 where all entries are randomly distributed 

ith missing observation ratio of 50%. In addition, the incomplete 

atrix is generated by 

 

 

 � = X 

X X � � + N 

N N � (25) 

here N 

N N � contains additive white Gaussian noise whose intensity 

s quantified by signal-to-noise ratio (SNR) 

NR = 

‖ X 

X X � �‖ 

2 
F 

‖ N 

N N �‖ 

2 
F 

. (26) 

o evaluate the recovery performance, the mean square error 

MSE) is adopted, defined as 

SE = 

‖ M 

M M − X 

X X ‖ 

2 
F 

mn 

(27) 

here M 

M M is the restored matrix. It is clear that a small value of 

SE indicates good recovery performance. 

Table 1 tabulates the results on the synthetic data in Gaussian 

oise of 20dB by different approaches. We see that the MSE of the 

iBNN is smaller than those of PAM, MC-DMF, MC-IALM, NLMC, 

MC, CNTK, and CNTK 

+ . Hence, our method is superior to these 

xisting approaches. It is worth noting that the recovered matrices 

y the BiBNN, PAM, and MC-IALM are of low rank, while those of 

he remaining schemes are of full rank. This may be the reason 

or the inferior performance of MC-DMF, NLMC, PMC, CNTK, and 

NTK 

+ . 
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Fig. 2. Phase transition of MSE versus observed percentage and SNR. 
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The phase transition, i.e., MSE versus the observation percent- 

ge and SNR, is depicted in Fig. 2 . The performance of CNTK and

NTK 

+ is not satisfactory, and their results will lead to a wide 

ange in the colorbar of the figure, which is not conducive to con- 

rast the other six algorithms. Thereby, the phase transition fig- 

res of CNTK and CNTK 

+ are not included. We see that the pro- 
6

osed method and PAM are superior because they have more dark 

reas than MC-DMF, MC-IALM, NLMC and PMC. Comparing our ap- 

roach with PAM, the former attains better performance than the 

atter in the low observation percentages. In addition, MC-DMF, 

C-IALM, NLMC and PMC produce a phenomenon where the best 

erformance is not in the highest observation percentage under 
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Fig. 3. Original windows , and two incomplete images with different masks in Gaussian noise with σ 2 = 0 . 005 . 
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he same SNR. The reason may be that they cannot resist noise. 

 higher observation percentage implies more noise in the given 

ata, resulting in performance degradation. In contrast, our method 

nd PAM are able to restrain noise. 

.3. Image inpainting 

Gray-scale image inpainting is one popular application of ma- 

rix completion since a gray-scale image can be straightforwardly 

epresented as a matrix that meets the approximately low-rank 

roperty. Images, in practice, may not be fully captured because 

f the shadow from other objects or damage to the photosensi- 

ive device. Besides, wireless transmission may blend images with 

oise. In this section, we leverage matrix completion to recover in- 

omplete images corrupted by Gaussian noise. The first used image 

s called Windows [52] whose dimensions are 349 × 366 . The pro- 

edure to mixing noise in incomplete images is to use the built-in 

ommand of ‘imnoise(image,‘gaussian’, μ, σ 2 )’ in MATLAB where μ
nd σ 2 denote the mean and variance of the noise, respectively. 

n our experiments, μ = 0 is applied for all cases. Furthermore, 

eak SNR (PSNR) and structural similarity (SSIM) are measured 

o evaluate the recovery performance. These two indices can be 

nvoked by the built-in MATLAB commands, viz. ‘psnr(recovered, 

riginal)’ and ‘ssim(recovered, original)’. It is worth mentioning 

hat larger values of PSNR and SSIM indicate better restoration 

erformance. 

We investigate two types of loss, namely, randomly missing 

nd missing not at random. The former has 50% missing pixels 

andomly distributed in the image, while the latter is generated 

y the text of “matrix completion”. Fig. 3 shows the original and 

ncomplete Windows . The left one is the original image, while 

he middle and right are the observed images with random and 

xed losses, respectively. Besides, the intensity of Gaussian noise is 
2 = 0 . 005 . 

Fig. 4 depicts the recovered images by different methods, ex- 

luding CNTK and CNTK 

+ . The first and second rows show the re- 

tored images in the presence of random and fixed losses, respec- 

ively. Besides, the two evaluation indices in dB are listed below 

he restored images. It is seen that the BiBNN attains larger PSNRs 

nd SSIMs than PAM, MC-DMF, MC-IALM, NLMC, and PMC, that 

s, our neural network outperforms these state-of-the-art methods. 

ote that the restored images by MC-DMF, MC-IALM, NLMC, and 

MC still contain noise, leading to unsatisfactory performance. The 

eason for retaining noise in the results may be that the repaired 

mages are of high-rank since the small singular values, associating 

ith their left and right singular vectors, are noisy. 

To compare with CNTK and CNTK 

+ , we need to reduce the 

mage size because CNTK requires more than 60 GiB memory to 

reate a kernel for processing the image with 349 × 366 . To re- 

ize windows , we exploit the built-in MATLAB command of ‘imre- 

ize(image,[numrows numcols])’, and then attain the resized im- 

ge with the dimensions of 160 × 160 . Subsequently, the small-size 
7

indows is masked by the two types of masks, and then the in- 

omplete images are contaminated by Gaussian noise with σ 2 = 

 . 005 . The restored images are shown in Fig. 5 where the first and

econd rows comprise the recovered images in random and fixed 

asks, respectively. We see that the CNTK and CNTK 

+ are able to 

estore the incomplete Windows in the random loss case, but their 

erformance is still inferior to the proposed approach. With the 

ext mask, the superiority of our network over CNTK and CNTK 

+ is 
ore obvious. It can be seen that the reconstructed images by the 

NTK and CNTK 

+ have blurry areas. 

Moreover, the impact of the percentage of randomly missing 

ata on PSNR is investigated, and the results are shown in Figs. 6 

nd 7 . Fig. 6 depicts the performance of the BiBNN, MC-DMF, MC- 

ALM, NLMC, and PMC on the original-size Windows . It is seen that 

he developed neural network attains the highest PSNR in all per- 

entages of missing data. When the percentage is smaller, the su- 

eriority of our BiBNN over MC-DMF, MC-IALM, NLMC, and PMC 

s more distinct. The difference between PAM and our network is 

ot obvious from 10% to 60% but becomes large between 70% and 

0%, especially the lowest PSNR of PAM in 80%. Besides, the PSNR 

f all algorithms, excluding MC-DMF and MC-IALM, decreases with 

he increase of the missing percentage. For the MC-DMF and MC- 

ALM, they attain their largest PSNR at 60% and 40%, respectively, 

hich are consistent with the results on synthetic data. On the 

ther hand, comparison of the proposed neural network, CNTK and 

NTK 

+ is plotted in Fig. 7 , which is based on the small-size image.

e see that the BiBNN outperforms the CNTK and CNTK 

+ . While 

he latter exhibit a similar curve to MC-DMF and MC-IALM, that 

s, the performance in the lowest missing percentage is not the 

est. 

Furthermore, we compare our method with the existing algo- 

ithms on another four images, namely, Lenna [53] , Peppers [53] , 

ea [18] and Mountains [18] . The images are illustrated in Fig. 8 

here the first row includes the original images, and the incom- 

lete images are shown in the second and third rows. Besides, 

aussian noise with σ 2 = 0 . 005 is added to the partially observed 

ictures. 

The PSNR and SSIM results on these four images are tabulated 

n Table 2 . Except the SSIM of our method on Lenna in fixed mask

s smaller than that of PAM, the PSNR and SSIM of the developed 

pproach are larger than those of the other methods. It is worth 

oting that although the BiBNN attains a smaller SSIM than PAM 

n fixed mask on Lenna , our PSNR is larger than that of PAM. 

.4. Recommender system 

The second application of matrix completion is recommender 

ystem. A recommender system can be modeled as an incomplete 

atrix whose row and column indices represent the user and item 

dentity numbers while the known entries are acquired ratings. 

he task of matrix completion is to predict the unknown ratings 

o as to suggest items to users. In this experiment, two datasets, 
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Fig. 4. Performance of different approaches in Gaussian noise with σ 2 = 0 . 005 . The top row contains results with random loss; The bottom row contains results with fixed 

loss. 

Table 2 

Results of different methods on four images. 

Image Mask Index Proposed PAM MC-DMF MC-IALM NLMC PMC 

Lenna random PSNR 22.4340 22.3716 21.6861 21.6584 21.7937 21.2323 

SSIM 0.4606 0.4563 0.4052 0.3822 0.3808 0.3559 

fixed PSNR 21.7603 19.5593 21.5645 21.4124 21.5564 21.2704 

SSIM 0.5095 0.5495 0.4162 0.4055 0.4057 0.4006 

Peppers random PSNR 23.4671 23.3994 21.9162 22.1254 22.3654 21.8147 

SSIM 0.4947 0.4927 0.3902 0.3781 0.3826 0.3601 

fixed PSNR 22.4636 21.0854 21.9735 22.0751 22.3287 21.9513 

SSIM 0.5814 0.5789 0.4050 0.3979 0.4000 0.3924 

Sea random PSNR 26.3713 26.3079 24.3904 23.3322 22.7366 22.2032 

SSIM 0.6075 0.6035 0.4688 0.4064 0.3757 0.3520 

fixed PSNR 26.7376 26.6685 23.1207 22.9349 22.9591 22.7584 

SSIM 0.6684 0.6672 0.4343 0.4205 0.4185 0.4099 

Mountains random PSNR 28.7422 28.6777 25.1559 24.1487 23.2669 22.7694 

SSIM 0.6727 0.6710 0.3246 0.2716 0.2291 0.2101 

fixed PSNR 29.1560 29.0452 23.5022 23.3547 23.2953 23.0148 

SSIM 0.7604 0.7583 0.2722 0.2454 0.2379 0.2295 

Fig. 5. Performance of proposed method, CNTK and CNTK + under two mask types 

in Gaussian noise with σ 2 = 0 . 005 . The top row contains results with random loss; 

The bottom row contains results with fixed loss. 

Fig. 6. PSNR versus percentage of randomly missing data in Gaussian noise with 

σ 2 = 0 . 005 by different approaches. 

v

B

3 http://grouplens.org/datasets/movielens/100k/ 
4 
8

iz. MovieLens 100k 3 and Jester 100k 4 are utilized to evaluate the 

iBNN performance. The details of these two datasets are listed in 
http://eigentaste.berkeley.edu/dataset/ 

http://eigentaste.berkeley.edu/dataset/
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Fig. 7. PSNR versus percentage of randomly missing data in Gaussian noise with 

σ 2 = 0 . 005 by BiBNN, CNTK and CNTK + . 

Fig. 8. Illustration of four images, including original and incomplete pictures with 

randomly missing and fixed masks. 

Table 3 

Recommendation datasets. 

Dataset # user # item # rating Rating range 

MovieLens 100k 943 1682 1 × 10 5 1 - 5 

Jester 100k 159 7699 1 × 10 5 –10 - 10 
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Fig. 9. MAE versus rank by proposed method and PAM on MovieLens and Jester 

datasets. 
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able 3 that includes the numbers of users, items, and ratings as 

ell as the range of rating. The rating of the i th user to the jth

tem is equal to the (i, j) entry of the incomplete matrix X X X �. Then,

e remove any row or column which has less than 2 observed 

ntries for performing cross-validation, resulting in 943 × 1541 for 

ovieLens 100k and 136 × 4000 for Jester 100k. Since the test 

ataset is not provided, we leverage the cross-validation strategy, 

imilar to the rank selection scheme, to evaluate prediction perfor- 

ance. Specifically, the whole observed set � is divided into �1 

nd �2 such that �1 + �2 = � and ‖ �1 ‖ 1 / ‖ �‖ 1 = 0 . 95 wherein

 

 

 �1 
and X X X �2 

are used to train and test, respectively. In addition, 

he estimation performance is evaluated by mean absolute error 
Table 4 

MAE of different approaches on MovieLens 100K 

Dataset Proposed PAM MC

MovieLens 100k 0.1690 0.1699 0.1

Jester 100k 0.1627 0.1631 0.1

9

MAE) [54] , defined as 

AE = 

‖ M 

M M �2 
− X 

X X �2 
‖ 1 

(HC − LC) || �2 || 1 (28) 

here HC and LC denote the highest and lowest scores in the rat- 

ng range, that is, HC − LC = 4 for MovieLens 100k, and HC − LC =
0 for Jester 100k. It is clear that a small value of MAE indicates 

ood prediction performance. 

Table 4 shows the results by different methods where the 

dopted rank of the BiBNN and PAM is 2. Note that CNTK and 

NTK 

+ are excluded since they cannot process these two large- 

cale matrices. It is seen that the BiBNN attains the small- 

st values among six methods for both MovieLens 100k and 

ester 100k. 

Moreover, we investigate the performance of our BiBNN and 

AM under different ranks from 1 to 10. The result is plotted in 

ig. 9 . Except for two similar MAEs at r = 1 , the BiBNN has smaller

alues than the PAM in the range of 2 to 10. It is seen that both

iBNN and PAN achieve the smallest MAE at r = 2 . 

. Conclusion 

In this paper, we have constructed a bi-branch neural net- 

ork for matrix completion. The proposed neural network is 

esigned via unfolding the matrix factorization formulation and 

earned by end-to-end training using all individual observed 

ntries. The developed BiBNN has been applied to image in- 

ainting and recommender system, achieving better performance 

han seven state-of-the-art approaches in terms of prediction 

ccuracy. 

The current BiBNN requires setting an essential parameter, that 

s, the rank of the objective matrix. In the future, we plan to offer 

he neural network the ability to learn the best rank automatically. 
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and Jester 100K datasets. 

-DMF MC-IALM NLMC PMC 

833 0.1835 0.1788 0.1817 

757 0.2215 0.1918 0.1996 
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