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Abstract— Inspired by sparse learning, the Markowitz mean-variance
model with a sparse regularization term is popularly used in sparse
portfolio optimization. However, in penalty-based portfolio optimization
algorithms, the cardinality level of the resultant portfolio relies on
the choice of the regularization parameter. This brief formulates the
mean-variance model as a cardinality (�0-norm) constrained nonconvex
optimization problem, in which we can explicitly specify the number of
assets in the portfolio. We then use the alternating direction method
of multipliers (ADMMs) concept to develop an algorithm to solve
the constrained nonconvex problem. Unlike some existing algorithms,
the proposed algorithm can explicitly control the portfolio cardinality.
In addition, the dynamic behavior of the proposed algorithm is derived.
Numerical results on four real-world datasets demonstrate the superiority
of our approach over several state-of-the-art algorithms.

Index Terms—�0-norm, alternating direction method of multi-
pliers (ADMMs), mean-variance model, sparse portfolio.

I. INTRODUCTION

Recently, neural network approaches [1]–[3] are proposed for
finance/asset management. For instance, we can use the radial basis
function (RBF) model to study the market trend [1]. Portfolio opti-
mization [4]–[7] is one kind of finance/asset management methods.
It aims at determining the investment percentages on N assets based
on historical data. The percentages form an N-dimensional vector www,
known as portfolio vector.

Optimizing a portfolio can be viewed as parameter estimation
in an adaptive system. Based on historical data, we determine the
investment percentages on the selected assets. Afterward, we use the
resultant portfolio to perform the investment for an operating period.
In the last decades, portfolio optimization has received considerable
attention in the machine learning community [2], [8]–[12]. For
instance, in [9] and [11], �1-norm regularization algorithms are
proposed. However, the drawback of using the �1-norm regularization
methods is that we cannot explicitly and directly control the number
of selected assets in the resultant portfolio.

The Markowitz mean-variance theory [5], [13] is an essential the-
ory to model the return and risk of a portfolio. It aims at constructing
a diversified portfolio that balances the return and risk [5], [13].
One research direction in the mean-variance model is to design a
robust algorithm that can handle the uncertainty of the estimated
model [14]–[16]. For example, in [15], a robust method for estimating
a modified covariance matrix is presented. The modified covariance
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matrix is a linear combination of two covariance matrices, estimated
by shrinkage transformation and a random matrix theory-based filter.

Another direction focuses on improving the quality of the invest-
ment scheme by adding constraints on the portfolio vector or adding
regularization terms into the objective function [17]–[20]. This direc-
tion can improve the generalization ability of the portfolio vector.
Here, “good generalization ability” means that the portfolio vector
has good performance against market volatility.

Since a dense portfolio creates some difficulties in management and
has high transaction costs [6], [17], modern portfolio theory focuses
on sparse portfolio optimization [6], [21], [22]. Inspired by sparse
learning, some portfolio selection algorithms introduce an �1-norm
regularization term into the objective function [17], [18], [23].
The sparse portfolio optimization can be considered as a special
form of feature extraction, in which we have a special form of
the objective function and some constraints. However, due to the
existence of constraints, conventional feature extraction techniques
may not be appropriate for sparse portfolio optimization. In addition,
the main drawback of using the �1-norm regularization is that we need
to tune the regularization parameter to obtain a plausible portfolio
cardinality.

In order to explicitly control the portfolio cardinality, cardinality
(�0-norm) constrained portfolio optimization algorithms are pro-
posed [6], [24], where the cardinality of the portfolio is the number
of selected assets. Nevertheless, �0-norm optimization problems are
NP-hard. To circumvent this issue, some frameworks suggest using
relaxation or approximation techniques [6], [24]. For instance, given
a target cardinality, we can relax the cardinality constraint into
an �1-norm related convex constraint [6]. It is worth noting that,
with relaxation, the target cardinality behaves as a sparsity control
parameter. Thus, the relaxation algorithm cannot explicitly control the
cardinality level. In addition, in the relaxation algorithm, the number
of decision variables is N2, rather than N .

The cardinality constrained portfolio optimization can be recast as
a mixed-integer programming (MIP) problem [21], [22]. In the MIP,
the sum of binary variables is the desired cardinality level. Thus,
there is no sparsity-related parameter to tune. Instead, the MIP needs
to tune the upper bound for the absolute value of all elements in the
portfolio vector.

The alternating direction method of multipliers (ADMMs) is a
popular learning scheme in many applications [25]–[28]. The ADMM
decomposes the original problem into several subproblems. The
resultant subproblems can be solved efficiently, especially when
they have closed-form expressions. The ADMM can be used to
determine the size of a neural network. For instance, in [26] and [27],
�1-norm-based ADMM algorithms are developed to construct flat
structure neural networks, but they cannot directly and explicitly
control the size of the resultant network. In [28], the ADMM concept
with an �0 constraint is used to construct deep neural networks.
However, in [28], there is no theoretical study on the convergence
and dynamic behaviors. Since there is a sum-to-one constraint in
portfolio optimization, the results of [26]–[28] cannot be used in
portfolio design.
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In [29], an approximate �0-norm is developed for sparse index
tracking, which is similar to sparse portfolio problems. Besides, the
�1-norm and �0-norm are acted as a regularization term to control
the cardinality level [9], [11], [12], [17], [18]. Based on ADMM,
an �1-regularization method is developed for minimizing the trans-
action cost [8]. To sum up, those aforementioned methods cannot
directly and explicitly control the cardinality level.

This brief proposes an ADMM-based algorithm for sparse portfolio
optimization. We use the ADMM concept to decompose the original
sparse portfolio optimization into three subproblems. In our formula-
tion, each subproblem has a closed-form solution and our algorithm
can explicitly control the number of selected assets. In addition,
we theoretically study the convergence behavior. Experiments are
conducted on four real-world datasets. The experimental results
demonstrate that the proposed algorithm is superior to several
�0- or �1-norm-based sparse portfolio optimization schemes.

This brief is organized as follows. Portfolio optimization and
ADMM concept are described in Section II. In Section III, the pro-
posed ADMM-based algorithm is developed. Numerical results are
reported in Section IV. Finally, conclusions are drawn in Section V.

II. BACKGROUND

A. Notations

We use a lower case or upper case letter to represent a scalar, while
vectors and matrices are denoted by bold lower case and upper case
letters, respectively. The transpose operator is denoted as (·)T, and
I represents the identity matrix. In addition, 111 and 000 represent
the vector of ones and the vector of zeros, respectively. Other
mathematical symbols are defined in their first appearance.

B. Portfolio Optimization

Given N risky assets, let R ∈ R
D×N be the daily return matrix,

where each row vector in R is the return vector of the N assets in
a particular day. From the daily return matrix, we can obtain the
mean daily return vector as well as the covariance matrix ��� ∈ R

N×N

of the daily return vectors. In the Markowitz mean-variance model,
we usually assume that ��� is positive definite [30]–[32]. When the
number of daily return vectors is not large enough, the estimated
covariance matrix may be positive semidefinite. In such a situation,
the estimated covariance matrix can be modified to positive definite
by adding �I to the covariance matrix, where � is a small positive
number. The classic Markowitz mean-variance model is a constrained
quadratic programming problem, given by

min
www

wwwT���www−λuuuTwww, s.t. wwwT111 = 1 (1)

where www ∈ R
N is the portfolio weight vector. The term wwwT���www

corresponds to the risk, while the term uuuTwww is referred to as the
return. Parameter λ > 0 is called the risk parameter. It balances the
risk and the return in the model. In general, a larger λ leads to a
higher return. When λ = 0, the model is called global minimum
variance portfolio [17], [33], which minimizes the risk only.

Since the solution of (1) is not a sparse vector, modern portfolio
optimization methods aim at controlling the portfolio cardinality
[6], [21], [34]. To construct a sparse portfolio, one idea is to use
regularization methods, i.e., adding an �0/�1-norm term into the
objective function.

With the �0-norm regularization [19], [20], the portfolio optimiza-
tion problem becomes

min
www

wwwT���www−λuuuTwww+β0�www�0, s.t. wwwT111 = 1 (2)

where β0 >0 is the regularization parameter. Due to the NP-hard issue
of the �0-norm minimization, the �1-norm is widely used to replace

the �0-norm [17], [18]. The sparse portfolio optimization problem
then becomes

min
www

wwwT���www−λuuuTwww+β1�www�1, s.t. wwwT111 = 1 (3)

where β1 >0 is the regularization parameter. Another formulation is
to constrain the �1-norm of the portfolio vector [35], given by

min
www

wwwT���www−λuuuTwww s.t. wwwT111 = 1 and �www�1 ≤ θ (4)

where θ ≥ 1. Note that the formulations in (2)–(4) cannot directly
and explicitly control the cardinality level.

To explicitly control the cardinality level, the cardinality con-
strained portfolio optimization is formulated as

min
www

wwwT���www − λuuuTwww, s.t. wwwT111 = 1 and �www�0 ≤ K (5)

where K is the desired number of nonzero elements in www. Note that
the problem stated in (5) is nonsmooth and nonconvex.

The cardinality constrained model in (5) can be recast as the
following MIP formulation [21], [24], given by

min
www

wwwT���www−λuuuTwww (6a)

s.t. wwwT111 = 1, eeeT111 ≤ K (6b)

− ξei ≤ wi ≤ ξei , i = 1, . . ., N (6c)

ei ∈ {0, 1}, i = 1, . . ., N (6d)

where ξ > 0 is a large number that represents an upper bound for the
absolute value of all elements in the optimal solution to model (6).
In general, solving (6) requires the combination of a continuous
optimization procedure and an integer programming procedure. The
MIP algorithm [21], [24] involves an exhaustive search procedure.

In [6], a relaxation method is proposed. It transforms (5) as a
convex semidefinite programming problem [36], given by

min
W

Tr(���W) − λ111TWuuu (7a)

s.t. Tr(111111TW) = 1, �W�1 ≤ K Tr(W), W ∈ S
+
N (7b)

where W is an N × N matrix, �W�1 is the sum of the absolute
values of the matrix elements, and S

+
N represents the set of positive

semidefinite matrices with dimensions N × N . The resultant portfolio
is obtained from the eigenvector corresponding to the largest eigen-
value of the solution of (7). The major problem of this formulation is
that the resultant portfolio may not be sparse and its cardinality level
may be greater than K . Also, in this positive semidefinite formulation,
the number of decision variables is N2. Thus, this formulation is not
suitable for large N .

C. ADMM

The ADMM algorithm [25], [28], [37] addresses the following
optimization problem:

min
xxx,yyy

f (xxx)+h(yyy), s.t. Axxx+ Byyy = ccc (8)

where xxx ∈ R
n and yyy ∈ R

m contain the decision variables, ccc ∈ R
d

is a constant vector, and A ∈ R
d×n and B ∈ R

d×m . In ADMM,
a Lagrangian function L(xxx, yyy,γγγ ) is first defined, given by

L(xxx,yyy,γγγ )= f (xxx) + h(yyy) + γγγ T(Axxx+Byyy − ccc) + ρ

2
�Axxx + Byyy − ccc�2

2

(9)

where γγγ ∈ R
d is the Lagrange multiplier and ρ > 0. The general

ADMM scheme is given by

xxxt+1 = arg min
xxx

L(
xxx, yyyt ,γγγ t

)
(10a)

yyyt+1 = arg min
yyy

L(
xxxt+1, yyy,γγγ t

)
(10b)

γγγ t+1 = γγγ t + ρ
(
Axxxt+1 + Byyyt+1 − ccc

)
. (10c)
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At each iteration, we need to solve the three subproblems 10(a)–10(c)
sequentially. In [38] and [39], it is shown that the γγγ -update (10c) can
be generalized into

γγγ t+1 = γγγ t + sρ(Axxxt+1 + Byyyt+1 − ccc) (11)

where s ∈ (0, ((5)1/2 + 1/2)). For many situations, s = 1.
There are three important issues in the ADMM. The first issue is

whether the optimal solutions for the subproblems stated in (10a) and
(10b) can be found or not. The second issue is whether the optimal
solutions of the subproblems stated in (10a) and (10b) have closed-
form solutions or not. The last one is whether the three alternating
steps stated in (10) converge or not. It should be noticed that the
first and second issues address two different aspects. The first issue
focuses on the existence of methods to find the optimal solutions to
the subproblems. The methods may be based on iterative algorithms
or closed-form formulas. The second issue focuses on closed-form
solutions.

III. ADMM FOR CARDINALITY CONSTRAINED

MEAN-VARIANCE PORTFOLIO OPTIMIZATION

A. Algorithm Development

This section develops our ADMM-based algorithm for (5). First,
we utilize the quadratic penalty method [40], [41] to address the
equality constraint. In this case, the new objective function is
wwwT���www − λuuuTwww + (C/2)(wwwT111 − 1)2. According to the quadratic
penalty method, C > 0 cannot be too small. Otherwise, the constraint
may be violated. Here, the meaning of “large” is related to the
magnitudes of ��� and uuu. For a large enough C , the resultant solution
is close to the optimal solution of the original problem. For our
application and the datasets, since the magnitudes of ��� and uuu are
small, we find that C = 1 is sufficiently large. With the quadratic
penalty method, the model (5) becomes

min
www,zzz

wwwT���www − λuuuTwww + C

2
(wwwT111−1)2+I(zzz), s.t. www = zzz (12)

where I(zzz) is an indicator function. For the indicator function,
if �zzz�0 ≤ K , then I(zzz) = 0. Otherwise, I(zzz) = +∞.

Let F(www) = wwwT���www−λuuuTwww+ (C/2)(wwwT111−1)2. The Lagrangian
function of (12) is given by

L(www, zzz,γγγ ) = F(www)+(www−zzz)Tγγγ + ρ

2
||www−zzz||22+I(zzz) (13)

where γγγ ∈ R
N is the Lagrange multiplier vector and ρ > 0 is the

penalty parameter. According to ADMM, the algorithm is formulated
as the following three alternating steps, given by

zzzt+1 = arg min
zzz

L(
wwwt , zzz,γγγ t

)
(14a)

wwwt+1 = arg min
www

L(
www, zzzt+1,γγγ t

)
(14b)

γγγ t+1 = γγγ t + ρ
(
wwwt+1−zzzt+1

)
. (14c)

We call the three updating steps in (14a)–(14c) as �0-ADMM.
1) Development of zzz-Update: To solve (14a), we can ignore all

the constant terms that do not include zzz in (13). The zzz-update is then
reduced to

zzzt+1 = arg min
zzz

F(wwwt ) + (
wwwt − zzz

)T
γγγ t + ρ

2

∣∣∣∣wwwt −zzz
∣∣∣∣2

2
+I(zzz)

= arg min
zzz

ρ

2

∣∣∣∣
∣∣∣∣wwwt −zzz + γγγ t

ρ

∣∣∣∣
∣∣∣∣

2

2

+ I(zzz). (15)

Define δδδ = wwwt + γγγ t/ρ. Hence, solving (15) is equivalent to solving
the following optimization problem, given by:

min
zzz

�δδδ − zzz�2
2 s.t. �zzz�0 ≤ K . (16)

Let � be the index set that indicates the nonzero elements of zzz. Also,
let �C be another index set that indicates the zero elements of zzz. The
objective value g(zzz) of (16) is then given by

g(zzz) =
∑
i∈�

(zi − δi )
2 +

∑
i�∈�C

(zi� − δi� )
2. (17)

For i � ∈ �C , we have zi� = 0. In addition, in minimizing g(zzz), for
i ∈ �, we should set zi = δi . Thus, we have

g(zzz) =
∑

i�∈�C

δ2
i� . (18)

To minimize g(zzz), the index set �C should contain the indices of
the N − K smallest (in absolute value) components of δδδ. That is, the
index set � should contain the indices of the K largest (in absolute
value) components of δδδ. Thereby, the solution to (16) is

zzzt+1 = HHH K (δδδ) (19)

where HHH K is an elementwise hard thresholding operator

HHH K (δi ) =
{

0, if |δi | < q

δi , if |δi | ≥ q.
(20)

In (20), q is the K th largest element of {|δ1|, . . ., |δN |}. If there are
less than K nonzero elements in δδδ, then q is the smallest nonzero
element of {|δ1|, . . ., |δN |}.

2) Development of www-Update: To solve (14b), we consider the
following problem:

wwwt+1 = argmin
www

F(www) + (
www − zzzt+1

)T
γγγ t + ρ

2

∣∣∣∣www − zzzt+1
∣∣∣∣2

2
+ I(zzzt+1).

(21)

In the above-mentioned problem, zzzt+1 and γγγ t are considered as
constants. Thus,

wwwt+1 = argmin
www

F(www) + wwwTγγγ t + ρ

2

∣∣∣∣www−zzzt+1
∣∣∣∣2

2

= argmin
www

wwwT


www − (
λuuu+ρzzzt+1 − γγγ t +C111

)T
www (22)

where 


 = ���+ ρ
2 I+ (C/2)111111T. Since 


 is positive definite, (21) has

the optimal solution, given by

wwwt+1 = (2��� + ρI + C111111T)−1(λuuu + ρzzzt+1 − γγγ t + C111). (23)

In addition, as 


 is positive definite, we have

∇F(wwwt+1) + γγγ t + ρ(wwwt+1 − zzzt+1) = 000. (24)

3) γγγ -Update: We can update γγγ t+1 according to (14c), given by

γγγ t+1 = γγγ t + ρ(wwwt+1−zzzt+1). (25)

4) Choice of ρ: In the proposed algorithm, ρ is able to affect the
convergence speed [25], [42], [43]. It can be set to a fixed constant
or an adaptive value according to the following scheme [42]–[44]:

ρ t+1 = min
{
αρ t , ρmax

}
(26)

where 0 < α < 2 is the scaling parameter and ρmax is the upper bound
for ρ. Recent research [43], [45], [46] shows that an adaptive strategy
on ρ can reduce the required number of iterations for convergence.
As �0-norm problems are nonconvex and nonsmooth, algorithms
usually lead to a suboptimal solution. With an adaptive strategy,
the objective value of the solution vector is better. In our case, the
objective value is F(www∗) and the solution vector is www∗. It is worth
mentioning that the convergence proof under this adaptive scheme
remains challenging in nonconvex situations [43], [45].

5) Summary of the Algorithm: We summarize the developed
�0-ADMM for portfolio optimization in Algorithm 1. It should be
noticed that all three update steps have closed-form expressions.
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Algorithm 1 �0-ADMM for Portfolio Optimization
Input: ���, uuu, K , λ
Initialize: C , ρ0, ρmax , α, www0, zzz0, γγγ 0, t
while not converge do

(1) zzz-update: zzzt+1 = HHH K (δδδ), where δδδ = wwwt + γγγ t/ρ t .
(2) www-update: wwwt+1 = (2���+ρ t I+C111111T)−1(λuuu+ρ tzzzt+1−γγγ t +C111).
(3) γγγ -update: γγγ t+1 = γγγ t + ρ t (wwwt+1−zzzt+1)

(4) ρ-update: ρ t+1 = min {αρ t , ρmax }
(5) t = t + 1

end while
Output: www∗

Fig. 1. Illustration of rolling windows.

B. Convergence Behavior

This section presents the convergence behavior of the pro-
posed �0-ADMM. First, in �0-ADMM, we have the following two
properties.

P1: For each t , there exists an η > 0 such that

L(
wwwt+1, zzzt+1,γγγ t+1

) − L(
wwwt, zzzt,γγγ t

) ≤ −η
∥∥wwwt+1 − wwwt

∥∥2

2
. (27)

P2: L(wwwt, zzzt,γγγ t ) is lower bounded.
Proof: The proofs of P1 and P2 are given in

Appendix A. �
Based on P1 and P2, we get Theorem 1.
Theorem 1: Since the suggested �0-ADMM satisfies P1 and P2,

{L(wwwt, zzzt,γγγ t )} converges.
Proof: Based on P1, {L(wwwt, zzzt,γγγ t)} is monotonically nonin-

creasing. From P2, L(wwwt, zzzt,γγγ t ) is lower bounded. Thus, the conver-
gence of {L(wwwt, zzzt,γγγ t )} can be guaranteed. �

Besides, the dynamic behavior of the sequence {wwwt, zzzt,γγγ t } is
provided in Theorem 2.

Theorem 2: As t → ∞, �wwwt+1 − wwwt�2 → 0, �zzzt+1 − zzzt�2 → 0,
and �γγγ t+1−γγγ t�2 →0.

Proof: The proof is given in Appendix B. �

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Settings

1) Datasets and Rolling Window: Four well-known datasets are
considered and they are Nasdaq 100, S&P 500, Russell 1000, and
Russell 2000. The data involve 1 699 trading days from May 1,
2009 to January 29, 2016 and are extracted from Yahoo Finance.
Following the common practice, suspended and newly enlisted assets
within the time period are excluded [2], [47]. In the experiments,
we consider the rolling window concept [2], [17] shown in Fig. 1.
We use a training window to create a portfolio and then test its
performance with the associated test window. The size of the training
window, denoted as Dtrain, is set to 500 days. The test window size,
denoted as Dtest , is 60 days [15]. We call the test window size as
a rebalancing period. Details of the four datasets are summarized
in Table I.

TABLE I

DETAILS OF FOUR DATASETS. FOR ALL DATASETS, TIME PERIOD
IS FROM MAY 1, 2009 TO JANUARY 29, 2016

TABLE II

DETAILS AND PROPERTIES OF ALL COMPARISON METHODS

2) Risk Parameter and Portfolio Size: To compare the performance
under different risk situations, we select λ = {0.001, 0.005}. For the
Nasdaq 100 dataset, we vary the portfolio size K from 30 to 60. For
the other datasets, we vary K from 30 to 90.

3) Comparison Algorithms: We implement five comparison algo-
rithms. They are �1-ADMM [17] and �1-Bregman1 [18] [see (3)],
�1-norm-constrained (�1-NC) [35] [see (4)], generalized sparse risk
parity (GSRP) [20] [see (2)], and MIP [21] (see (6)]. Note that except
for the MIP, we cannot explicitly control the resultant cardinality
level. That is, in the �1-ADMM, �1-Bregman, �1-NC, and GSRP,
we need to tune their regularization parameters to meet the desired
cardinality level. Table II summarizes the details of the comparison
algorithms and our method.

In [6], the relaxation algorithm in (7) has a much higher compu-
tational and space complexities. It involves N2 decision variables,
while the comparison algorithms and our �0-ADMM involve N
decision variables only. In addition, the relaxation algorithm cannot
explicitly control the cardinality level. Therefore, we do not include
this relaxation algorithm as a comparison algorithm.

4) Parameter Setting: For �1-Bregman, �1-ADMM, and our
�0-ADMM, the initial values of decision variables are set to zero.
For our algorithm, we set ρ0 = 0.0004, ρmax = 20, and α = 1.2.
Besides, C = 1 is selected empirically for the proposed algorithm.
For the three methods, the maximum number of iterations is 100.
For �1-ADMM and our �0-ADMM, if �wwwt −wwwt−1�2 < 10−4�wwwt−1�2,
then the algorithms stop. For �1-Bregman, if |111Twwwt − 1| < 5 × 10−6

the algorithm stops. For �1-NC, GSRP, and MIP, we use the default
settings in Mosek [48] or CVX [49].

B. Performance Measurement

Two well-known measurements are used for evaluation. One is the
out-of-sample mean return (OSMR), denoted as μ, that is, the mean
return of test periods. For the τ th testing window, let rrr τ ∈ R

N be
the return vector over the testing period, where [rrr τ ]i is the return for
holding the i th assets for Dtest days. The OSMR is defined as

μ = 1

T

T∑
τ=1

wwwT
τrrr τ (28)

where T is the number of testing periods.

1The �1-regularized subproblem of �1-Bregman is solved by ADMM.
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Fig. 2. Convergence of L(wwwt, zzzt,γγγ t ) in �0-ADMM. (a) S&P 500.
(b) Russell 1000.

Fig. 3. Dynamics of weight values. (a) S&P 500 (K = 25). (b) S&P 500
(K = 50). (c) Russell 1000 (K = 25). (d) Russell 1000 (K = 50).

Another one is the out-of-sample Sharpe ratio (OSSR), denoted
as S . In finance management, a higher return usually results in a
higher risk (variation of the returns). The OSSR [50] is an indicator
that balances the risk and return, given by

S = μ

σ
, where σ =

√√√√ 1

T −1

T∑
τ=1

(
wwwT

τrrr τ − μ
)2

(29)

where σ is the standard derivation of out-of-sample returns, i.e., the
variation of returns.

In finance management, for two portfolios with a similar return,
we should select the one with a higher Sharpe ratio. Similarly, for
two portfolios with a similar Sharpe ratio, we should select the one
with a higher return.

C. Convergence Behavior

This section uses empirical results to verify Theorems 1 and 2.
We consider the S&P 500 and Russell 1000 datasets with K = 25
and K = 50. In Theorem 1, we theoretically show that in
our �0-ADMM, L(wwwt, zzzt,γγγ t ) converges. Fig. 2 depicts its conver-
gence behavior. In terms of L(wwwt, zzzt,γγγ t ), our algorithm converges
within around 60 iterations and the value of L(wwwt, zzzt,γγγ t) decreases
with number of iterations. The above-mentioned behavior confirms
Theorem 1.

In Theorem 2, we theoretically show that as t → ∞, �wwwt+1 −
wwwt�2 → 0, �zzzt+1 − zzzt�2 → 0, and �γγγ t+1 −γγγ t�2 → 0. Fig. 3 shows
the dynamics of the estimated weights. From the Fig. 3, after around
60 iterations, there are no big changes in the estimated weights. The
above-mentioned behavior confirms Theorem 2. Since the estimated
weights can be negative, the vertical axis cannot be in the logarithmic
scale.

In addition, we present the convergence rates of �0-ADMM and
�1-ADMM in Fig. 4. Since there is no L(wwwt, zzzt,γγγ t) in the �1-ADMM

Fig. 4. Convergence behaviors of �0-ADMM and �1-ADMM. (a) S&P 500.
(b) Russell 1000.

Fig. 5. Influence of C on S&P 500 dataset. (a) μ with λ = 0.001.
(b) S with λ = 0.001. (c) μ with λ = 0.005. (d) S with λ = 0.005.

algorithm, we show their objective function values, i.e., wwwT���www −
λuuuTwww. We see that the two ADMM-based algorithms have a similar
convergence speed.

D. Influence of Parameter C

In our formulation, there is a penalty parameter C . This section
investigates the influence of C . We test C ∈ {10−3, 10−2, 10−1,
1, 101, 102} on various cardinality levels. The results of the S&P
500 dataset are reported in Fig. 5. According to the experimental
results, at the same cardinality level, there are a few changes in
the performance over different C values. Other datasets have similar
behavior.

E. Influences of Portfolio Cardinality and Risk Parameter

The sparse portfolio optimization is a multiobjective problem. That
is, a good portfolio should be with a small cardinality level, a high
return, and a high Sharpe ratio. This section studies the behaviors of
our method at various cardinality levels and risk parameter values.

We consider four risk parameter values and a number of cardinality
levels. The results are depicted in Figs. 6 and 7 for S&P 500 and
Russell 1000, respectively. From Figs. 6 and 7, we have the following
observations.

1) Cardinality: For the same risk parameter value λ, there is no
general trend on returns and Sharpe ratio values for various
cardinality levels. It is worth noting that a large cardinality level
(large K ) leads to high transaction costs and creates difficulties
in management. As a result, we should consider using a port-
folio of small cardinality in practice. From Figs. 6(b) and 7(b),
even for small cardinalities like 30 and 35, the Sharpe ratios
of our approach are still larger than 1.
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Fig. 6. Performance of our �0-ADMM for S&P 500 dataset. (a) Return.
(b) Sharpe ratio.

Fig. 7. Performance of our �0-ADMM for Russell 1000 dataset. (a) Return.
(b) Sharpe ratio.

2) Risk Parameter: From Figs. 6 and 7, in general, for a given
cardinality level, a larger λ leads to a higher return value.
However, there is no general trend on Sharpe ratio values for
various λ values.

Since the sparse portfolio optimization is a multiobjective problem,
the choices of λ and cardinality level depend on the investor’s
preference. For instance, in the S&P 500 dataset (Fig. 6), if the
investor would like to focus on the return first, he/she may choose
λ = 0.007 and the cardinality level equal to 60. With such a choice,
we have a 6.41% return and the Sharpe ratio is equal to 1.14.
Or he/she may choose λ = 0.007 and the cardinality level is equal
to 35. With such a choice, we have the highest Sharpe ratio.

On the other hand, if the investor would like to focus on the Sharpe
ratio first, he/she may choose λ = 0.003 and the cardinality level is
equal to 75. In this setting, we have the highest Sharpe ratio around
1.34 and a reasonable return around 5.46%.

F. Influence of Parameter s

One might argue that from (11) when we gradually increase ρ

from a small value, scaling γγγ at the same time might improve the
algorithm performance. To investigate this, we conduct experiments
on the S&P 500 dataset with s ∈ {0.2, 0.4, 0.6, 0.8, 1}. The results are
reported in Fig. 8. From the figure, there are no conclusive trends. For
example, from Figs. 8(a) and (b), with λ = 0.001, when K ∈ {40, 50},
setting s to 0.2 provides the largest values of μ and S . However, for
K ∈ {30, 60}, the best value of s is 1. For other settings and other
datasets, we also cannot make conclusive trends on the influence of
parameter s. Therefore, in this brief, we set s = 1 for the proposed
�0-ADMM.

G. Performance Comparison

This section compares the proposed �0-ADMM with five com-
parison algorithms: �1-ADMM [17], �1-Bregman [18], �1-NC [35],
GSRP [20], and MIP [21]. Note that except for the �0-ADMM
and MIP, we need to tune the regularization parameter or con-
straint parameter, such that the cardinality meets the desired value.
The results of different methods are depicted in Figs. 9–12. Before
making a detailed discussion, we provide the following overview.

Fig. 8. Influence of s. (a) μ with λ = 0.001. (b) S with λ = 0.001.
(c) μ with λ = 0.005. (d) S with λ = 0.005.

Fig. 9. Performance comparison on S&P 500 with Dtest = 60. (a) μ with
λ = 0.001. (b) S with λ = 0.001. (c) μ with λ = 0.005. (d) S with λ = 0.005.

1) In general, under the same portfolio cardinality, our �0-ADMM
has a higher return and Sharpe ratio.

2) The performance of the �1-ADMM and �1-NC are comparable.
3) In the �1-Bregman, �1-NC, and GSRP, we can tune the reg-

ularization parameter or the constraint parameter to control
the cardinality level. However, not all cardinality levels can
be achieved. That is, in some cases, no matter how we tune the
parameters, we cannot achieve the desired cardinality levels.
For example, as shown in Fig. 9, the achievable cardinality
levels of GSRP are from 30 to 50, while the achievable
cardinality levels of �1-Bregman are from 50 to 90. Also,
as shown in Fig. 12, the achievable cardinality levels of �1-NC
are from 70 to 90. Based on the above-mentioned observation,
in the rest of this section, we mainly compare the �0-ADMM
with �1-ADMM and MIP.

1) Cardinality: Now, we discuss the performance of different
algorithms when fixing λ values under different cardinality values.

We consider the S&P 500 dataset with λ = 0.001. From Fig. 9(a),
the return of our �0-ADMM is around 4.8% for all cardinality levels.
However, when the �1-ADMM is used, in order to have around 4%
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Fig. 10. Performance comparison on Russell 1000 with Dtest = 60.
(a) μ with λ = 0.001. (b) S with λ = 0.001. (c) μ with λ = 0.005.
(d) S with λ = 0.005.

Fig. 11. Performance comparison on Nasdaq 100 with Dtest = 60. (a) μ
with λ = 0.001. (b) S with λ = 0.001. (c) μ with λ = 0.005. (d) S with
λ = 0.005.

return, we need to increase the cardinality level to 90. When the MIP
is used, in order to have around 4.5% return, we need to increase
the cardinality level to 45. For the GSRP, the return is around 2.55%
only. For the �1-Bregman, the largest return value is around 3.187%
at the cardinality level equal to 90. In addition, our �0-ADMM has
better Sharpe ratio values, as shown in Fig. 9(b).

On the Russell 1000 dataset with λ = 0.005, we also observe
that our �0-ADMM has a better performance. From Fig. 10(c), the
return of our �0-ADMM is around 5.7% for all cardinality levels.
In particular, when the cardinality level is 35, the return and the
Sharpe ratio of our method are 6.1% and 1.4, respectively. For the
comparison algorithms, the MIP provides the best performance at
the cardinality level equal to 70. However, at this cardinality level,
the MIP provides a 4.8% return only and its Sharpe ratio is equal
to 1.137. For the �1-ADMM, when the cardinality level is 90, its
return and the Sharpe ratio are quite low. For the �1-NC, when the

Fig. 12. Performance comparison on Russell 2000 with Dtest = 60. (a) μ
with λ = 0.001. (b) S with λ = 0.001. (c) μ with λ = 0.005. (d) S with
λ = 0.005.

cardinality level is 90, its return and the Sharpe ratio are 4.491% and
1.13, respectively.

For the Nasdaq 100 and Russell 2000 datasets, the results are
reported in Figs. 11 and 12, respectively. In general, our algo-
rithm has better return and Sharpe ratios. In a few cases, the
comparison methods are comparable to or a bit better than our
�0-ADMM. For example, in the Nasdaq 100 dataset with λ = 0.001
[Fig. 11(a) and (b)], when we fix the cardinality level to 35, the return
of the MIP is slightly higher than that of our �0-ADMM. However,
at this cardinality level, our �0-ADMM can achieve a higher Sharpe
ratio.

Another example is in the Russell 2000 dataset with λ = 0.001,
as shown in Figs. 12(a) and (b). From Fig. 12(b), when the cardinality
level is 85, the Sharpe ratio of the MIP is 1.779, which is a bit higher
than that of our �0-ADMM. However, at this cardinality level, our
�0-ADMM has a much better return, as shown in Fig. 12(a).

2) Risk Parameter: Risk parameter λ balances the return and risk.
We use the results on the S&P 500 dataset (Fig. 9) for discussion.
In general, a larger λ leads to a better return.

From Fig. 9, for λ = 0.001 and K = 30, the return of our
�0-ADMM is 4.811% and the Sharpe ratio is 1.300, while the return
of MIP is 3.139% and the Sharpe ratio is 0.768. When we increase
λ to 0.005 with K = 30, the return of our algorithm increases to
5.119% and the Sharpe ratio slightly decreases to 1.143, while the
return of �1-ADMM increases to 3.446% only and the Sharpe ratio
is 0.783.

For both λ = 0.001 and λ = 0.005, the largest returns of the MIP
are achieved at K = 40. However, with λ = 0.001, the return of
the MIP is 4.205%, which is lower than that of �0-ADMM. When
λ = 0.005, the profit of MIP is 4.915%, while our algorithm has a
5.353% return.

For λ = 0.001 and K = 90, the return of our algorithm is 4.863%,
while the return of �1-ADMM is 4.331%. When we increase λ to
0.005, the return of our algorithm is 5.912%, while the return of
�1-ADMM is 5.094%.

It should be noticed that in the above-mentioned discussion cases,
our method has better Sharpe ratio values. Also, similar behaviors
are observed in other datasets.
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H. Difference Between �0-ADMM and �1-ADMM

For �1-ADMM and our �0-ADMM, both of them use the ADMM
concept to construct the training process. From the experimental
results, our �0-ADMM can construct a better sparse portfolio. In addi-
tion, the advantage of using our approach is that we can explicitly
control the cardinality level.

The �1-ADMM has poor performance, especially at low cardinality
levels. The reason is that, in model (3), β1�www�1 is a penalty term and
it has two effects. The first one is the resultant cardinality level. Also,
it controls the relative importance between �www�1 and the original
objective wwwT���www − λuuuTwww. To obtain a sparser portfolio, we need
to use a large β1. That is, the weighting of wwwT���www − λuuuTwww is very
small. Hence, at a low cardinality level, we obtain a low return μ and
Sharpe ratio S . In addition, there is no direct relationship between
β1 and the resultant cardinality level. To obtain a specific cardinality
level, we need to try a number of β1 values.

V. CONCLUSION

In this brief, we propose an ADMM-based algorithm for the
mean-variance portfolio optimization problem based on the �0-norm
constraint. The algorithm is able to explicitly control the portfolio
cardinality. Our method consists of three alternating updates. Each
of them has a closed-form solution. In addition, the convergence
behavior is studied. Experimental results are conducted on four
real-world datasets. Compared with several �0-norm and �1-norm
schemes, the proposed approach is superior in terms of returns and
Sharpe ratios.

APPENDIX A
PROOF OF P1 AND P2

A. Proof of P1:
For L(wwwt , zzzt ,γγγ t), we consider

� = L(
wwwt+1, zzzt+1,γγγ t+1

) − L(
wwwt , zzzt ,γγγ t

)
= L(

wwwt , zzzt+1,γγγ t
) − L(

wwwt , zzzt ,γγγ t
)

+L(
wwwt+1, zzzt+1,γγγ t

) − L(
wwwt , zzzt+1,γγγ t

)
+L(

wwwt+1, zzzt+1,γγγ t+1
) − L(

wwwt+1, zzzt+1,γγγ t
)
. (30)

From (14a), L(wwwt , zzz,γγγ t ) is minimized with respect to zzz by
(wwwt , zzzt+1,γγγ t). Thus,

L(
wwwt , zzzt+1,γγγ t

) − L(
wwwt , zzzt ,γγγ t

) ≤ 0. (31)

Since L(www, zzzt+1,γγγ t) is strongly convex with respect to www, the
following inequality holds:

L(
wwwt , zzzt+1,γγγ t

) ≥ L(
wwwt+1, zzzt+1,γγγ t

)+ m
2

∥∥wwwt−wwwt+1
∥∥2

2

+ ∇wwwL |T
(wwwt+1,zzzt+1,γγγ t )(www

t−wwwt+1). (32)

In addition, L(www, zzzt+1,γγγ t) is a positive quadratic function of www, then
∇wwwL|(wwwt+1,zzzt+1,γγγ t ) = 000. The relationship between L(wwwt , zzzt+1,γγγ t ) and
L(wwwt+1, zzzt+1,γγγ t ) are given by

L(
wwwt+1, zzzt+1,γγγ t

)−L(
wwwt, zzzt+1,γγγ t

) ≤ − m
2

∥∥wwwt−wwwt+1
∥∥2

2
. (33)

For the γγγ -update, the difference of the function value is

L(
wwwt+1, zzzt+1,γγγ t+1

) − L(
wwwt+1, zzzt+1,γγγ t

)
= (

wwwt+1 − zzzt+1
)T

(γγγ t+1 − γγγ t). (34)

Recalling (24), we have

∇F(wwwt+1) + γγγ t + ρ
(
wwwt+1 − zzzt+1

) = 000. (35)

Based on (14c) and (35), we attain

γγγ t+1 = −∇F(wwwt+1) and γγγ t = −∇F(wwwt ). (36)

From (14c), we also conclude that

wwwt+1 − zzzt+1 = 1
ρ
(γγγ t+1 − γγγ t). (37)

Plugging (35)–(37) into (34), we have

L(
wwwt+1, zzzt+1,γγγ t+1

) − L(
wwwt+1, zzzt+1,γγγ t

)
= 1

ρ

∥∥∥γγγ t+1 − γγγ t�2
2 = 1

ρ

∥∥∥∇F(
wwwt+1

) − ∇F(
wwwt

)�2
2

= 1
ρ

∥∥2���wwwt+1 + C111111Twwwt+1 − 2���wwwt − C111111Twwwt
∥∥2

2

≤ 1
ρ

∥∥2��� + C111111T
∥∥2

2

∥∥wwwt+1 − wwwt
∥∥2

2
≤ M2

ρ

∥∥wwwt+1 − wwwt
∥∥2

2
(38)

where M = �2��� + C111111T�2
2 is the Lipschitz continuous constant of

∇F(www). Plugging (31), (33), and (38) into (30), we see that

L(
wwwt+1, zzzt+1,γγγ t+1

)−L(
wwwt, zzzt,γγγ t

)≤(M2

ρ
− m

2)
∥∥wwwt+1− wwwt

∥∥2

2
. (39)

Hence, the function value is monotonically nonincreasing with ρ ≥
(2M2/m). Let η = −((M2/ρ)−(m/2)). The proof is completed. �

B. Proof of P2:
Since F(www) is convex and has a Lipschitz continuous gradient,

we have

F(zzzt)−F(wwwt )≤∇F(wwwt)T(zzzt −wwwt )+ M
2 �zzzt −wwwt�2

2. (40)

That is, F(zzzt ) − M
2 �zzzt − wwwt�2

2 ≤ F(wwwt) + ∇F(wwwt)T(zzzt − wwwt ). As
γγγ t = −∇F(wwwt), we obtain

F(zzzt )− M
2

∥∥zzzt −wwwt
∥∥2

2
≤ F(wwwt)−(zzzt −wwwt)Tγγγ t

= F(wwwt)+(wwwt −zzzt)Tγγγ t . (41)

From (41), the function value L(www, zzz,γγγ ) at (wwwt , zzzt ,γγγ t) is given by

L(wwwt , zzzt ,γγγ t) = F(wwwt )+(wwwt −zzzt )Tγγγ t + ρ
2

∣∣∣∣wwwt −zzzt
∣∣∣∣2

2
+I(zzzt)

≥ F(zzzt ) + (
ρ
2 − M

2

)∥∥zzzt −wwwt
∥∥2

2
+ I(zzzt ). (42)

Recall that F(zzz) = zzzT���zzz − λuuuTzzz + (C/2)(zzzT111 − 1)2. As ��� is
positive definite, ��� + (C/2)111111T is symmetric positive definite. Hence,
F(zzz) can be expressed as F(zzz) = �bbb − Azzz�2

2 + c, where A is
a full rank matrix with the property of ��� + (C/2)111111T = ATA,
bbb = (1/2)(AT)−1(λuuu + C111), and c = (C/2) − �bbb�2

2. Clearly,
F(zzz) is lower bounded. In addition, I(zzzt ) is lower bounded by 0.
Hence, L(wwwt , zzzt ,γγγ t ) > −∞ is lower bounded if ρ ≥ M . Note that
ρ ≥ (2M2/m) must hold in P1. Hence, we should select a ρ value
such that ρ ≥ max{M, (2M2/m)}. The proof is completed. �

APPENDIX B
PROOF OF THEOREM 2

P1 indicates that∥∥wwwt+1−wwwt
∥∥2

2
≤ 1

η

(L(
wwwt, zzzt,γγγ t

)−L(
wwwt+1, zzzt+1,γγγ t+1

))
. (43)

Since L(wwwt+1, zzzt+1,γγγ t+1) converges, we have �wwwt+1 −wwwt�2
2 → 0,

as t → ∞.
Regarding γγγ t , from (38), �γγγ t+1−γγγ t�2

2 ≤ M2�wwwt+1−wwwt�2
2. Therefore,

we have �γγγ t+1−γγγ t�2
2 → 0, as t → ∞.

Finally, for {zzzt }, we have∣∣zzzt+1−zzzt
∥∥2

2

=
∥∥∥wwwt+1− 1

ρ

(
γγγ t+1 − γγγ t

)−wwwt + 1
ρ

(
γγγ t−γγγ t−1

)∥∥∥2

2

≤
(∥∥wwwt+1−wwwt

∥∥
2
+ 1

ρ

∥∥γγγ t+1 −γγγ t
∥∥

2
+ 1

ρ

∥∥γγγ t −γγγ t−1
∥∥

2

)2

≤ 3
(∥∥wwwt+1 − wwwt

∥∥2

2
+ 1

ρ

∥∥γγγ t+1 − γγγ t
∥∥2

2
+ 1

ρ

∥∥γγγ t − γγγ t−1
∥∥2

2

)
. (44)

In (44), the last inequality comes from the fact that 2ab ≤ a2 +b2 for
any real a and b. Since limt→∞ �γγγ t+1−γγγ t�2

2 = 0 and limt→∞ �wwwt+1−
wwwt�2

2 = 0, and from (44), we can conclude that �zzzt+1 −zzzt�2
2 → 0,

as t → ∞. The proof is completed. �
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