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MUSIC with Capped Frobenius Norm: Efficient
Robust Direction-of-Arrival Estimator
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Abstract—Direction-of-arrival (DOA) estimation is a frequent
need in the field of array signal processing. While many con-
ventional algorithms achieve excellent performance in Gaussian
noise, they are vulnerable to impulsive noise. Although several ap-
proaches have been proposed for robust DOA estimation against
gross errors, their disadvantages might limit the applicability
in practice. For instance, maximum likelihood (ML) estimation
based algorithms involve high computational complexity, and
ℓp-MUSIC with p ∈ (1, 2) requires tweaking p for handling
different noises. In this work, we devise a capped Frobenius norm
(CFN) for complex-valued data inspired by the truncated least
squares loss function. Since the cap threshold is the boundary
to differentiate the normal and outlier-contaminated entries, we
propose a normalized median absolute deviation based strategy
for its automatic determination. In doing so, accurate estimation
is achieved in both Gaussian and impulsive noise. As the CFN is
nonconvex and nonsmooth, we exploit the half-quadratic theory
to simplify the resultant problem into a tractable optimization,
which is then handled by alternating convex optimization with
computationally-efficient closed-form solution. Furthermore, its
convergence behaviors are analyzed, i.e., the objective function
value is convergent, and there exists a subsequence in the
variable sequence converging to a critical point. Simulation
results exhibit its superior performance over several state-of-the-
art algorithms in terms of estimation accuracy and resolution
capability. MATLAB code is available at https://github.com/Li-
X-P/Code-Robust-DOA-Estimator.

Index Terms—Direction-of-arrival estimation, capped Frobe-
nius norm, MUSIC, robust recovery, proximal block coordinate
descent.

I. INTRODUCTION

D IRECTION-of-arrival (DOA) estimation has been an
important task in array signal processing, and has a wide

range of applications, such as radar [1], sonar [2], wireless
communications [3], and electronic reconnaissance [4]. Ex-
ploiting the second-order statistics, numerous DOA estimators
have been proposed, including multiple signal classification
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(MUSIC) [5], [6], estimation of signal parameter via rotational
invariance techniques (ESPRIT) [7], [8], principal-eigenvector
utilization for modal analysis (PUMA) [9] and their vari-
ants [10]–[12]. In addition, the low-rank property is adopted
to remove the noise in the received signal for performance
enhancement [13]–[17]. This is because the corresponding
noise-free data matrix is of low rank when the number of
targets is less than those of antennas and snapshots. Low-
rank matrix decomposition (LRMD) [13] and low-rank and
sparse decomposition (LRSD) [14] exploit the nuclear norm
to replace the rank function. Besides, gain-phase atomic norm
minimization (GP-ANM) employs a new atomic norm to
characterize the low-rank property [16]. Since the nuclear
norm is a convex relaxation of the rank function, its solution
might deviate from the optimality. To handle this issue, ℓp-
norm with p ∈ (0, 1), logarithm, and Laplace functions
are adopted as the penalties on the singular values of the
covariance matrix [17]. Moreover, compressed sensing has
been applied for DOA estimation where the total-variation
norm replaces ℓ1-norm for sparsity constraint [18]. All of these
algorithms are derived based on the assumption that the noise
in the received signal is independent identically distributed
(IID) Gaussian random variable [19], [20]. Therefore, they
exhibit high estimation accuracy in Gaussian noise scenarios,
but suffer performance degradation in the presence of non-
Gaussian noise.

In real-life situations, non-Gaussian interference is also
common, e.g., impulsive noise in radar signals [21] and
communications system [22]. The probability density function
(PDF) of impulsive noise has heavier tails than the Gaussian
distribution. This feature is analogous to outliers in statistics
since the heavy-tailed distribution results in a higher proba-
bility of occurrence for values over a few standard deviations
than the Gaussian distribution. Thereby, the conventional DOA
estimators might not work properly in impulsive noise.

One approach for DOA estimation in the presence of
outliers is to exploit maximum likelihood (ML) estimation. For
example, [23] and [24] adopt Gaussian mixture model (GMM)
to model impulsive noise and hence their algorithms outper-
form the conventional methods in GMM noise. Besides, [25]
and [26] assume that noise obeys the Cauchy distribution
and thus the resultant approaches perform well in α-stable
noise. However, the ML estimation based algorithms possess
high computational complexity. This is because it requires
dealing with a complicated nonlinear and nonconvex multi-
dimensional optimization problem.

Another approach for outlier resistance is to preprocess the
received data using a nonlinear function, such that the impact
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of outliers on the DOA estimates reduces. For instance, [27]
and [28] propose a zero-memory nonlinear (ZMNL) func-
tion to clip the amplitude of the observed measurements. In
addition, [29] suggests utilizing four hyperbolic functions to
suppress gross errors. Although they are easy to implement,
and possess low computational complexity, the nonlinear map-
ping generally destroys the low-rank property of the signal
subspace. Thereby, their performance might be degraded when
the rank of the signal subspace increases [24]. To handle this
issue, [30] proposes an empirical characteristic function to
achieve robustness, which does not change the rank of the
signal subspace.

Moreover, the fractional lower-order statistics method has
been utilized for robust DOA estimation, resulting in ro-
bust covariation-based MUSIC (ROC-MUSIC) [31], fractional
lower order moment based MUSIC (FLOM-MUSIC) [32],
sign covariance matrix based MUSIC (SCM-MUSIC) [33],
Kendall’s tau covariance matrix based MUSIC (TCM-
MUSIC) [33], and their variants [34], [35]. However, they
are suboptimal and need large sample sizes for satisfactory
performance [24], [36].

On the other hand, the low-rank property has been exploited
for robust DOA estimation. Specifically, ℓp-MUSIC adopts the
low-rank matrix factorization and ℓp-norm with p ∈ (1, 2) to
seek for the signal subspace [36]. Although it achieves good
performance in impulsive noise, it may not satisfy the practical
timing requirement since solving the ℓp-norm based problem
has relatively high computational complexity. To handle this
issue, Liu et al. [37] suggest exploiting robust principal
component analysis (RPCA) developed by Candès et al. [38]
to remove the anomalies in the output signal and then the
reconstructed data are used for DOA estimation. Nevertheless,
the resultant algorithm introduces two auxiliary parameters,
such that it requires tweaking the trade-off parameters.

In this work, we aim at devising an accurate and
computationally-efficient DOA estimator for Gaussian noise
and impulsive noise environments. To resist anomalies, we
propose a capped Frobenius norm (CFN) for complex-valued
data inspired by the truncated least squares loss function
(TLS) [39], [40]. The TLS has been applied for outlier estima-
tion in computer vision where the nonconvex and nonsmooth
TLS is approximated by a smooth function [41], [42]. Herein,
the CFN is exploited for robust subspace estimation. Besides,
the difference between the CFN and TLS is discussed in the
next section. We then combine the CFN with the low-rank
matrix factorization strategy to formulate the robust DOA
estimation problem, resulting in a nonsmooth and nonconvex
optimization. Different from the existing works, we adopt
the half quadratic theory [43], [44] to convert the resultant
problem into a tractable task, that is, convex optimization with
respect to (w.r.t.) each individual variable. The proximal block
coordinate descent method (PBCD) [45] is then adopted as the
solver for the multi-variable problem, leading to alternating
convex optimization with the closed-form solution. Further-
more, the convergence of the suggested method is established,
including the objective function value and variable sequence.

We briefly summarize the contributions of this work as
follows:

(i) We exploit the normalized median absolute deviation
(MAD) to adaptively determine the cap threshold of
the CFN. In doing so, the suggested algorithm achieves
excellent performance in both impulsive and Gaussian
noise without tweaking parameter.

(ii) We adopt the half quadratic theory to simplify the non-
convex and nonsmooth problem, leading to a Frobenius
norm optimization with a regularization term. By utiliz-
ing PBCD, the multi-variable optimization is separated
into three convex problems with closed-form solutions.

(iii) We analyze the convergence behavior of the devised
algorithm. Specifically, the proposed method guarantees
that the objective function value is convergent, and there
exists a subsequence in the variable sequence converging
to a critical point.

(iv) Simulation results exhibit the superior performance of
our method over the state-of-the-art robust approaches
in the presence of impulsive noise. Besides, in Gaussian
noise scenarios, our algorithm attains comparable perfor-
mance to conventional methods.

The remainder of this paper is organized as follows. We
introduce the signal model, and review related works in
Section II. In Section III, we present the CFN and then the
robust DOA estimator is derived. Its convergence behavior
and computational complexity are analyzed in Section IV. In
Section V, numerical examples are included to evaluate the
devised method by comparing with several existing algorithms.
Finally, concluding remarks are included in Section VI.

II. BACKGROUND

In this section, notations and signal model are provided, and
relevant works are reviewed.

A. Notation
Italic, bold lower-case, and bold upper-case letters denote

scalars, vectors, and matrices, respectively. Consider a M×N
matrixAAA, its (i, j) entry is signified by ai,j orAAA(i, j). Besides,
AAAT and AAAH are the transpose and Hermitian transpose of
AAA, respectively. The ℓp-norm with p ∈ (0, 2) is defined as
∥AAA∥p = (

∑M,N
i=1,j=1 |ai,j |p)1/p where |ai,j | is the magnitude

of ai,j , while ∥AAA∥2,1 =
∑N

j=1

√∑M
i=1 |ai,j |2 is the ℓ2,1-

norm. The vectorization operator is defined as vec(AAA) =
[aaaT:,1;aaa

T
:,2; . . . ;aaa

T
:,N ]T , where aaa:,j for j ∈ [1, N ] stands for

the jth column of AAA. Moreover, E{·} and (·)−1 denote the
expectation and inverse operators, respectively.

B. Signal Model
Consider an M -sensor ULA with inter-element spacing d.

Note that it requires d ≤ λ/2 to avoid phase ambiguity,
where λ is the wavelength of the incoming signal. Assume
Q far-field, uncorrelated narrow-band signals impinge on the
array from distinct directions {θ1, θ2, ..., θQ}. The discrete-
time complex baseband signal received by the mth sensor at
time instant n is modeled as

xm(n) =

Q∑
q=1

sq(n)e
j2π(m−1) sin(θq)d/λ + em(n), (1)
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where sq(n) denotes the qth source signal, j =
√
−1 is the

imaginary unit, and em(n) is the additive noise, which can be
white Gaussian noise and/or non-Gaussian noise.

Organizing the output signal of M sensors in the vector
form yields

xxxn = AAAsssn + eeen, (2)

where xxxn = [x1(n), . . . , xM (n)]T ∈ CM is the received signal
vector, sssn = [s1(n), . . . , sQ(n)]

T ∈ CQ is the source vector,
eeen = [e1(n), . . . , eM (n)]T ∈ CM is the noise vector, and
AAA ∈ CM×Q is the array manifold matrix of the form:

AAA = [aaa(θ1), . . . , aaa(θQ)]. (3)

Here, aaa(θq) is the steering vector:

aaa(θq) = [1, ej2π sin(θq)d/λ, . . . , ej2π(M−1) sin(θq)d/λ]T . (4)

Collecting N snapshots, the received signal is

XXX = [xxx1, . . . ,xxxN ]. (5)

In practice, the number of sources is less than those of sensors
and snapshots, that is, Q < min(M,N). Thereby, the noise-
free XXX is of low rank. Note that, in this work, the number of
sources Q is assumed to be known. There are many algorithms
to detect the number of sources. Interested readers are referred
to [46]–[49]. It is worth mentioning that the number of sources
can be accurately estimated when they are not very close. Still,
source enumeration for closely-spaced sources is a challenging
topic [50].

C. Related Work

The MUSIC method exploits the second-order statistics
and assumes IID Gaussian noise with variance σ2 [5]. The
covariance matrix of the received signal is ĈCCx = 1

NXXXXXX
H .

Since the signal and noise are uncorrelated, the covariance
matrix of the received signal is given by:

CCCx = AAACCCsAAA
H + σ2III, (6)

where CCCs = E{sssnsssHn } is the source covariance matrix. The
eignenvalue decomposition of CCCx is:

CCCx = UUUsΛΛΛsUUU
H
s + σ2UUUnUUU

H
n , (7)

where UUUs ∈ CM×Q is the signal subspace, ΛΛΛs ∈ CQ×Q is
a diagonal matrix containing the corresponding eigenvalues
sorted in descending order, and UUUn ∈ CM×(N−Q) is called
the noise subspace. The MUSIC first computes the spatial
spectrum:

PMUSIC(θ) =
1

aaaH(θ)(III −UUUsUUUH
s )aaa(θ)

. (8)

Then, the DOA estimates can be obtained via finding the peaks
of the spatial spectrum. The conventional MUSIC has excellent
performance in Gaussian noise scenarios. When the received
signal is corrupted by impulsive noise, its performance is
degraded.

To be robust against impulsive noise, ℓp-MUSIC combines
the ℓp-norm with p ∈ (1, 2) and low-rank matrix factorization
strategy to estimate the signal subspace [36]:

min
YYY ,ZZZ

∥XXX − YYYZZZ∥pp, (9)

where YYY ∈ CM×Q is a full column rank matrix and ZZZ ∈
CQ×N is a full row rank matrix. It is clear that the range space
spanned by the columns of YYY is the same as the subspace of
AAA, that is,

span(AAA) = span(YYY ). (10)

After YYY is attained, the projection matrix on the noise subspace
is given by

PPPn = III − YYY (YYY HYYY )−1YYY H . (11)

The spatial spectrum is then computed via

Pℓp−MUSIC(θ) =
1

aaaH(θ)PPPnaaa(θ)
. (12)

Subsequently, DOA estimates can be obtained. Although the
ℓp-MUSIC with p ∈ (1, 2) attains high estimation accuracy in
impulsive noise, it has two drawbacks.

(i) The ℓp-MUSIC might not meet the practical timing
requirement since solving the ℓp-norm based problem
has relatively high computational complexity.

(ii) The ℓp-MUSIC requires manually tweaking the value of
p for different noise environments, e.g., p→ 2 for white
Gaussian noise and p→ 1 for stronger impulsive noise.

Another strategy for robust DOA estimation is to apply the
RPCA concept [37], resulting in

min
MMM,SSS

J(MMM) + ηr(SSS) +
γ

2
∥XXX −MMM −SSS∥2F , (13)

where SSS is the noise matrix, η > 0 and γ > 0 are the penalty
parameters, while r(·) is a regularization term. For example,

r(SSS) =
∑N

j=1

√∑M
i=1 |si,j |2 will generate a column-wise

sparse SSS and r(SSS) =
∑M,N

i=1,j=1 |si,j | yields a sparse SSS.
Meanwhile, J(MMM) is defined as

J(MMM) ≜
min(M,N)∑

i=1

F (δi(MMM)), (14)

where δi(MMM) denotes the ith singular value ofMMM and F (·) is a
weakly convex sparseness measure [37]. It is clear that J(MMM)
is capable of seeking for a low-rank MMM that can be considered
as a noise-free received signal. Then, MMM is exploited for DOA
estimation. Note that, in (13), the choices of η and γ have
significant impact on the rank of MMM and sparsity level of
SSS, which affects the estimation performance. To the best of
our knowledge, there is no strategy to automatically determine
these two parameters for different noise scenarios. Therefore,
in real-life scenarios, (13) requires manually tuning η and γ
to attain satisfactory performance.

III. PROPOSED ALGORITHM

In this section, we first introduce the CFN for complex-
valued data. The suggested algorithm is then presented.
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Fig. 1: Illustration of φ(s) in one-dimensional case, where ϑ = 1.

A. Capped Frobenius Norm

Prior to introducing the CFN, we review the Frobenius
norm for complex-valued entries. Give a complex matrix
AAA ∈ CM×N , the Frobenius norm is defined as

∥AAA∥F =

√√√√ M∑
i=1

N∑
j=1

|ai,j |2

=

√√√√ M∑
i=1

N∑
j=1

(
ℜ(ai,j)2 + ℑ(ai,j)2

)
=

∥∥∥∥[ℜ(AAA)ℑ(AAA)

]∥∥∥∥
F

, (15)

where ℜ(·) and ℑ(·) are the real and imaginary parts of a
complex number.

Based on the Frobenius norm, the CFN for complex-valued
matrices is defined as

∥AAA∥CF

=

√√√√ M∑
i=1

N∑
j=1

(
min(ℜ(ai,j)2, ϑ2)+min(ℑ(ai,j)2, ϑ2)

)
=

∥∥∥∥[ℜ(AAA)ℑ(AAA)

]∥∥∥∥
CF

. (16)

It is easy to see that when ϑ → ∞, the CFN is equivalent to
the Frobenius norm.

Besides, we review TLS [39], [40] for comparison, which
has the following form:

∥AAA∥TLS =

√√√√ M∑
i=1

N∑
j=1

min(|ai,j |2, ϑ2)

=

√√√√ M∑
i=1

N∑
j=1

min(ℜ(ai,j)2 + ℑ(ai,j)2, ϑ2). (17)

Compared with the TLS, the CFN introduces the cap threshold
to the real and imaginary parts. Consider one entry case, if only
the real part is corrupted by an outlier, the CFN limits the real
part and does not change the imaginary part. In contrast, the
TLS destroys the component without anomaly.

Since the CFN is nonsmooth and nonconvex, it is difficult
to optimize the resultant problem. We propose a strategy to

convert this challenging problem into a tractable optimization
via Lemma 1.

Lemma 1. Given a real-valued matrix GGG ∈ RM×N . Let
fϑ(GGG) = ∥GGG∥2CF , then minGGG fϑ(GGG) is equivalent to

min
GGG,SSS

(
∥GGG−SSS∥2F + hϑ(SSS)

)
, (18)

where hϑ(SSS) is an entry-wise operator, defined as

hϑ(SSS(i, j)) =

{
−(ϑ− |si,j |)2 + ϑ2, |si,j | < ϑ,

ϑ2 |si,j | ≥ ϑ.
(19)

Proof: See Appendix A.
Now we know that optimizing the CFN based problem

is simplified as the Frobenius norm optimization with a
regularization term. It is clear that its subproblem w.r.t. GGG is
a linear least squares problem with closed-form solution. We
then introduce the following lemma to derive the solution of
its subproblem w.r.t. SSS.

Lemma 2. For the subproblem of (18) w.r.t. SSS:

min
SSS
φ(SSS) = min

SSS

(
∥GGG−SSS∥2F + hϑ(SSS)

)
. (20)

Its optimal solution is

SSS∗(i, j) = Tϑ(gi,j) =

{
0, |gi,j | < ϑ,

gi,j , |gi,j | ≥ ϑ.
(21)

In addition, the subgradient of φ(SSS) at minimizer SSS∗ is

∂φ(SSS)

∂s∗i,j
=

{
0 ∈ [−(gi,j + ϑ), ϑ− gi,j ], |gi,j | < ϑ,

0, |gi,j | ≥ ϑ.
(22)

Proof: See Appendix B.
Fig. 1 shows the solution of mins φ(s) in one-dimensional

case where ϑ = 1. We see that when |g| < ϑ, the unique
minimizer is s∗ = 0. For |g| = ϑ, there are multiple
minimizers, and one of them is s∗ = g. When |g| > ϑ, the
unique minimizer is s∗ = g.

Moreover, the solution to (20) is affected by the selection
of ϑ. Herein, we propose a strategy to adaptively determine
it. If GGG is considered as the fitting error with the mean being
assumed 0, −ϑ < gi,j < ϑ is considered as a confidence
interval to identify outliers. To obtain a robust confidence
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interval in the presence of outliers, we suggest adopting the
normalized MAD [51] to calculate the standard deviation:

σ = 1.4826×Med(|vec(GGG)−Med(vec(GGG))|), (23)

where Med(·) is the sample median operator. Then, ϑ is
updated via

ϑ = ζ × σ, (24)

where ζ > 0 controls the range of confidence interval. The
selection of ζ is discussed in Section V.

B. CFN-MUSIC

1) Signal Subspace Estimation: To achieve robust DOA
estimation, we suggest combining the CFN and low-rank
factorization to search for the signal subspace, resulting in

min
YYY ,ZZZ

∥XXX − YYYZZZ∥2CF . (25)

In accordance to the definition of the CFN, (25) is equivalent
to the following real-valued problem:

min
YYY ,ZZZ

∥∥∥∥[ℜ(XXX − YYYZZZ)
ℑ(XXX − YYYZZZ)

]∥∥∥∥2
CF

. (26)

Employing Lemma 1, (26) is converted into the Frobenius
norm optimization with a regularization term:

min
YYY ,ZZZ,SSS

Lϑ(YYY ,ZZZ,SSS) = min
YYY ,ZZZ,SSS

∥∥∥∥[ℜ(XXX − YYYZZZ)
ℑ(XXX − YYYZZZ)

]
−
[
ℜ(SSS)
ℑ(SSS)

]∥∥∥∥2
F

+hϑ

([
ℜ(SSS)
ℑ(SSS)

])
.

(27)

It is clear that (27) is a multi-variable nonconvex optimization
problem. We then exploit the PBCD concept to deal with (27),
resulting in the following iterative procedure:

SSSk+1 = argmin
SSS

Lϑk+1(YYY k,ZZZk,SSS), (28a)

ZZZk+1 = argmin
ZZZ

Lϑk+1(YYY k,ZZZ,SSSk+1) + µ
∥∥ZZZ −ZZZk

∥∥2
F
,

(28b)

YYY k+1 = argmin
YYY

Lϑk+1(YYY ,ZZZk+1,SSSk+1)+µ
∥∥YYY −YYY k

∥∥2
F
,

(28c)

where µ > 0 is the proximal parameter. It is seen that the
PBCD alternately updates one of the variables while fixing
the remaining variables at each iteration.

We first focus on tackling (28a) and reformulate it:

S̃SS
k+1

= argmin
S̃SS

(
∥G̃GG

k
− S̃SS∥2F + hϑk+1(S̃SS)

)
, (29)

where G̃GG
k

=

[
ℜ(XXX − YYY kZZZk)
ℑ(XXX − YYY kZZZk)

]
∈ R2M×N and S̃SS

k
=[

ℜ(SSS)
ℑ(SSS)

]
∈ R2M×N . Based on Lemma 2, an optimal solution

of (29) is computed as

S̃SS
k+1

= Tϑk+1(G̃GG
k
). (30)

Algorithm 1 CFN-MUSIC

Input: Received data matrix XXX ∈ RM×N , target number Q,
µ = 0.1, and ϑ0 = 100.
Initialize: Randomize YYY ∈ RM×Q and ZZZ ∈ RQ×N

1. Signal subspace estimation
for k = 1, 2, . . . ,Kmax do

1) Update ϑk+1 via (32)
2) Compute S̃SS

k+1
via (30)

3) Update SSSk+1 via (31)
4) Compute ZZZk+1 via (34)
5) Compute YYY k+1 via (36)
Stop if stopping criterion is met.

end for
2. DOA estimation
6) Compute projection matrix on signal subspace via (37)
7) Compute spatial spectrum via (38)
8) Find θ̃q with q ∈ [1, Q] via peak search of spatial
spectrum

Output: θ̃q with q ∈ [1, Q] and spatial spectrum

After obtaining S̃SS
k+1

, SSSk+1 is updated by:

SSSk+1 = S̃SS
k+1

(1 :M, :) + jS̃SS
k+1

(M + 1 : 2M, :), (31)

where S̃SS
k+1

(1 : M, :) extracts the rows from the 1st to M th
to obtain a matrix.

Note that we require updating ϑ prior to handling (28a).
To ensure convergence of the proposed algorithm, we suggest
computing ϑk+1 via:

ϑk+1 = min(ζ × σk+1, ϑk). (32)

That is, the value of ϑk is monotonically nonincreasing during
iterations.

Subsequently, we deal with (28b). Apparently, it is equiva-
lent to the following complex-valued problem:

ZZZk+1=argmin
ZZZ

∥XXX−YYY kZZZ−SSSk+1∥2F +µ∥ZZZ −ZZZk∥2F . (33)

Its solution is

ZZZk+1 =
(
(YYY k)HYYY k+µIII

)−1(
(YYY k)H(XXX−SSSk+1) + µZZZk

)
.

(34)

Finally, we handle (28c). Similar to (28b), it is reformulated
as a complex-valued problem:

YYY k+1=argmin
YYY

∥XXX−YYYZZZk+1−SSSk+1∥2F +µ∥YYY−YYY k∥2F , (35)

whose solution is

YYY k+1=
(
(XXX−SSSk+1)(ZZZk+1)H+µYYY k

)(
ZZZk+1(ZZZk+1)H+µIII

)−1

.

(36)
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(a) SNR = -3 (b) SNR = 0 (c) SNR = 3 (b) SNR = 6

Fig. 2: Impact of ζ for different SNRs.

2) DOA Estimation: After we obtain the signal subspace
YYY k+1, denoted by YYY for concise expression, the projection
matrix on the signal subspace is given by

PPP s = YYY (YYY HYYY )−1YYY H . (37)

The spatial spectrum is then computed via

PCFN−MUSIC(θ) =
1

aaaH(θ)(III −PPP s)aaa(θ)
. (38)

Finally, the DOA estimates can be found via seeking for the
Q peaks of the spatial spectrum.

The proposed approach is termed capped Frobenius norm
based MUSIC (CFN-MUSIC) whose steps are summarized in
Algorithm 1. There are two termination conditions. One is to
reach the maximum iteration number. The other one is that
CFN-MUSIC stops when it is approximately convergent [52],
defined as

∥YYY k+1ZZZk+1 − YYY kZZZk∥2F
MN

≤ 10−8. (39)

IV. THEORETICAL ANALYSIS

This section analyzes the convergence behavior and com-
putational complexity of CFN-MUSIC.

A. Convergence Behavior

The convergence of the objective function value is estab-
lished in Theorem 1.

Theorem 1. Let Lϑk(YYY k,ZZZk,SSSk) be the objective function
value generated by Algorithm 1, then it satisfies the following
properties:

(i) Lϑk(YYY k,ZZZk,SSSk) is nonincreasing as all variables up-
date.

(ii) Lϑk(YYY k,ZZZk,SSSk) is lower bounded.
Therefore, {Lϑk(YYY k,ZZZk,SSSk)}k∈N is convergent.

Proof: See Appendix C.
We then analyze the variable sequence behavior in Theo-

rem 2.

Theorem 2. Let (YYY k,ZZZk,SSSk) be the sequence generated by
Algorithm 1. For any initialization with finite ∥YYY 1∥F , ∥ZZZ1∥F
and Lϑ1(YYY 1,ZZZ1,SSS1), we have the following:

(i) The sequence (YYY k,ZZZk,SSSk) is bounded.

(ii) There exists a subsequence (YYY ki ,ZZZki ,SSSki) converging
to an accumulation point (YYY ∗,ZZZ∗,SSS∗).

(iii) The accumulation point (YYY ∗,ZZZ∗,SSS∗) is a critical point.
Therefore, the estimated variable sequence has a subsequence
converging to a critical point.

Proof: See Appendix D.

B. Computational Complexity

In this subsection, we study the computational complexity of
CFN-MUSIC. The complexity of updating SSSk is O(MNQ),
while computing ZZZk and YYY k has a complexity of O(MNQ2).
Therefore, the computational complexity in the signal sub-
space estimation is O(KmaxMNQ2). In DOA estimation, the
complexity for calculating the projection matrix is O(M2Q).
Then, the spatial spectrum computation has a complexity of
O(M2Tθ) where Tθ is the number of searches which de-
pends on the resolution and range. Thereby, the computational
complexity in DOA estimation is O(M2Tθ). As a result, the
overall complexity is O(KmaxMNQ2 +M2Tθ).

Table I tabulates the computational complexities of three ro-
bust estimators where Kinner is the number of inner iterations
in the ℓp-MUSIC. For LRMA-ADMM, M + Q > Q2 holds
when the number of targets is much less than antenna number.
It is observed that our method has the lowest computational
complexity among them.

TABLE I: Complexity comparison of robust algorithms

Method Computational complexity

CFN-MUSIC O(KmaxMNQ2 +M2Tθ)

ℓp-MUSIC O(KmaxKinnerMNQ2 +M2Tθ)

LRMA-ADMM O(KmaxMN(M +Q) +M2Tθ)

V. SIMULATION

In our simulations, the signals are Gaussian distributed with
equal power, and the ULA is comprised of M = 10 sensors
with the inter-element spacing of d = 0.5λ. In addition, the
number of snapshots is N = 128, and unless stated otherwise,
the DOAs of the signals are θ1 = −30◦ and θ2 = 20◦.

We consider two types of noise, namely, zero-mean white
Gaussian noise and two-component GMM noise. The GMM
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(a) Proposed (b) ℓp-MUSIC (c) LRMA-ADMM (b) MUSIC

Fig. 3: Reconstructed spatial spectrum of two signals by different algorithms in -9dB GMM noise.

noise is a popular impulsive noise [53], and its PDF is given
by

pv(v)=
c1
πσ2

1

exp

(
−|v|2

σ2
1

)
+

c2
πσ2

2

exp

(
−|v|2

σ2
2

)
, (40)

where 0 < ci < 1 with c1 + c2 = 1 while σ2
1 and σ2

2 are
variances. To simulate the impulsive noise, it requires σ2

2 ≫
σ2
1 and c2 < c1. It means that sparse and high power noise

samples with variance σ2
2 and occurrence probability c2 are

mixed in Gaussian background noise with small variance σ2
1 .

We set σ2
2 = 100σ2

1 and c2 = 0.1. The signal-to-noise ratio
(SNR) of GMM noise in dB is defined as

SNR = 10 log10

( ∥XXX∥2F
MNσ2

v

)
, (41)

where σ2
v =

∑2
i=1 ciσ

2
i is the total noise variance.

A. Performance Metrics

The performance is measured by the mean square error
(MSE) in dB, defined as

MSE = 10 log10

( 1

Mc

Mc∑
m=1

Q∑
q=1

(θ̂q,m − θq)
2

Q

)
, (42)

where Mc = 100 is the number of Monte Carlo trials and
θ̂q,m is the qth DOA estimate at the mth trial.

Another performance metric is the probability of resolution.
For each individual source, if the magnitude of the DOA
estimation error is less than 0.5◦, then the corresponding
source is considered to be successfully resolved.

B. Investigation of ζ

Since the proposed algorithm has one tunable parameter,
viz. ζ, we first investigate its impact on estimation perfor-
mance. The results are plotted in Fig. 2 where four SNR levels
from -3dB to 6dB are considered. It is seen that, in all noise
levels, the values of MSE decrease with boosting ζ in Gaussian
noise, while MSEs first reduce and then increase with ζ in
impulsive noise. This is because a small ζ generates a narrow
confidence interval, leading to many entries being considered
as outlier-contaminated elements. In Gaussian noise scenarios,
all observed entries are not corrupted by anomalies and thus a
bigger ζ results in better performance. Under impulsive noise,

a small ζ leads to many entries to be mistaken as outliers,
while a very large ζ cannot identify all anomaly-contaminated
entries. To achieve satisfactory performance in both types of
noise, we select ζ = 3 for the following simulations.

Moreover, we provide an intuitive interpretation why ζ
decreases as the ratio of the number of anomalies and that
of the noisy components increases. Based on (41), we attain

σ2
1 =

∥XXX∥2F
MN(99c2 + 1)10SNR/10

, (43)

that is, σ2
1 decreases as c2 increases. This means that when

the ratio of anomalies to noisy components is increased, the
variance of Gaussian component reduces. With an appropriate
sigma, the 3-sigma rule has been adopted for outlier detec-
tion [54], [55]. Specifically, the samples that fall outside 3-
sigma interval are likely to be outliers as 99.7% of samples fall
within 3-sigma interval for normal distribution. For unimodal
distributions, the probability of being within the interval is
at least 95% by the Vysochanskij–Petunin inequality [56].
Therefore, for GMM noise, the interval [−3σ1, 3σ1] can be
considered as a baseline to identify outliers. It is reported
that the normalized MAD provides a robust measurement for
standard deviation estimation [51]. Therefore, given a SNR,
the estimated standard deviation σ of GMM noise via the
normalized MAD remains relatively stable with various c2.
If ζ is chosen as ζσ ≈ 3σ1, [−ζσ, ζσ] can be deemed an
appropriate interval to differentiate anomalies in GMM noise.
We have analyzed that when c2 becomes large, σ1 reduces,
whereas σ remains relatively stable. Consequently, ζ decreases
as c2 increases.

When c2 = 0, the GMM noise reduces to white Gaussian
noise. The normalized MAD is able to provide an accurate
standard deviation estimate for Gaussian noise, indicating that
the interval [−3σ, 3σ] can cover 99.7% samples of zero-mean
white Gaussian noise. Therefore, we set ζ = 3 to balance the
estimation performance between GMM and Gaussian noise
scenarios, although ζ = 3 generates a little bit of performance
loss for Gaussian noise.

C. Performance Comparison

The CFN-MUSIC is compared with TLS-MUSIC, MU-
SIC [5], PUMA [9], EPUMA [12], ESPRIT [7], root-
MUSIC [57], ℓp-MUSIC [36], LRMA-ADMM [37], and
fast improved covariance matrix reconstruction approach
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Fig. 4: MSE versus SNR in GMM noise.

-9 -6 -3 0 3 6 9 12 15

SNR (dB)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b

il
it

y

Fig. 5: Probability of resolution versus SNR in GMM noise.

(FICMRA) [17]. For the ℓp-MUSIC, p is set as 1.1 which is
the suggested value in [36]. Moreover, we include the Cramér–
Rao lower bound (CRLB) as a performance benchmark. The
CRLB in Gaussian noise is presented in [58], while CRLB for
GMM noise is provided in [36].

We first compare the spatial spectrum of CFN-MUSIC, ℓp-
MUSIC, LRMA-ADMM, and MUSIC since these four algo-
rithms are able to compute the spatial spectrum. The results
are plotted in Fig. 3 where the output signal is corrupted by
-9dB GMM noise. The corresponding MSEs of CFN-MUSIC,
ℓp-MUSIC, LRMA-ADMM, and MUSIC are -10.5dB, 4.8dB,
7.4dB, and 25.3dB, respectively. It is clear that the CFN-
MUSIC achieves the smallest estimation error among them. In
addition, the computation times of CFN-MUSIC, ℓp-MUSIC,
LRMA-ADMM, and MUSIC are 0.13s, 5.80s, 0.16s and 0.11s.
It is known that the proposed algorithm is faster than the
existing robust methods. Note that since PUMA, EPUMA,
ESPRIT, and root-MUSIC do not need to compute the spatial
spectrum, they are faster than these four approaches.

1) Performance in GMM Noise: We then compare all
methods in GMM noise. Fig. 4 shows MSE versus SNR ∈
[−9, 15]dB. It is seen that the CFN-MUSIC, TLS-MUSIC, ℓp-
MUSIC, and LRMA-ADMM attain smaller MSEs than MU-
SIC, PUMA, EPUMA, ESPRIT, root-MUSIC, and FICMRA.
Besides, the MSEs of CFN-MUSIC are smaller than those of
TLS-MUSIC, ℓp-MUSIC, and LRMA-ADMM in all SNRs.
Fig 5 plots the probability of resolution versus SNR. Similarly,
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Fig. 6: MSE versus ∆θ(◦) in 3dB GMM noise

-9 -6 -3 0 3 6 9 12 15

SNR (dB)

-30

-20

-10

0

10

20

30

M
S

E
 (

d
B

)

6

-20.5

-20

-19.5

Fig. 7: MSE versus SNR in zero-mean white Gaussian noise.
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Fig. 8: Probability of resolution versus SNR in zero-mean
white Gaussian noise.

CFN-MUSIC, TLS-MUSIC, ℓp-MUSIC, and LRMA-ADMM
achieve higher probabilities than the other five algorithms in
the range of -9dB to 6 dB. In addition, CFN-MUSIC and ℓp-
MUSIC have comparable probabilities that are slightly higher
than those of TLS-MUSIC and LRMA-ADMM in low SNRs.
When SNR is larger than 9dB, all methods exhibit good
performance. Fig. 6 shows the estimation performance versus
source separation, where DOAs are {20◦, 20◦+∆θ}. It is seen
that FICMRA attains the best performance with ∆θ = 1◦ since
it is a high-resolution DOA estimation method. In addition, the
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Fig. 9: MSE versus ∆θ(◦) in 3dB white Gaussian noise.

CFN-MUSIC and ℓp-MUSIC yield comparable MSEs, which
are superior to the remaining methods. When ∆θ ∈ [2◦, 8◦],
the CFN-MUSIC has the lowest estimation error.

2) Performance in White Gaussian Noise: We further com-
pare all methods in white Gaussian noise. Note that the
parameters of CFN-MUSIC, TLS-MUSIC, ℓp-MUSIC, and
LRMA-ADMM do not change. The results are shown in
Figs. 7 and 8. It is seen that the PUMA, MUSIC, CFN-
MUSIC, and FICMRA obtain better performance than TLS-
MUSIC, root-MUSIC, ℓp-MUSIC, LRMA-ADMM, ESPRIT,
and EPUMA. That is, the performance of ℓp-MUSIC and
LRMA-ADMM degrades in white Gaussian noise. Besides,
CFN-MUSIC attains comparable performance to MUSIC and
PUMA, indicating that our method does not degrade in white
Gaussian noise. A similar conclusion is found in probability
of resolution versus SNR, plotted in Fig. 8. The estimation
performance versus ∆θ is shown in Fig. 9. We see that the
CFN-MUSIC obtains the best performance among the four
robust algorithms. When ∆θ ∈ [1◦, 4◦], the MSEs of the
CFN-MUSIC are slightly higher than those of the conventional
approaches, except for MUSIC. When ∆θ ∈ [5◦, 8◦], the CFN-
MUSIC is on par with PUMA and FICMRA.

VI. CONCLUSION

In this article, we have devised an efficient DOA estima-
tor using the CFN and low-rank matrix factorization. The
proposed algorithm, termed CFN-MUSIC, has one auxiliary
parameter that is considered as a threshold to differentiate
normal and outlier-contaminated elements. Thereby, we ex-
ploit the robust statistics concept to design a strategy with
which the threshold is adaptively determined. Besides, we
adopt the half-quadratic theory to simplify the nonconvex
and nonsmooth problem caused by the CFN. The intractable
problem is converted into the Frobenius norm optimization
with a regularization term, which is handled via alternating
convex optimization with closed-form solution. The conver-
gence behavior of CFN-MUSIC has been analyzed, that is,
the objective function is convergent while there exists a
subsequence in the variable sequence converging to a critical
point. Simulation results demonstrate that the CFN-MUSIC
achieves better performance in GMM noise in terms of es-
timation accuracy and the probability of resolution. Besides,

in Gaussian noise, the performance of the CFN-MUSIC is
comparable to that of MUSIC and PUMA.

APPENDIX A
PROOF OF LEMMA 1

Since the half-quadratic theory is adopted, we first introduce
it using the following lemma:

Lemma 3. [43]: Given f(g) and h(s), if f(g) makes ϕ(g) =
g2−f(g) convex, and h(s) generates a convex function ψ(s) =
s2 + h(s), we then have

f(g) = inf
s

(
(g − s)2 + h(s)

)
, g ∈ (−∞,+∞), (44a)

h(s) = sup
g

(
− (g − s)2 + f(g)

)
, s ∈ (−∞,+∞). (44b)

Based on the half-quadratic theory, we derive the equiva-
lent problem of minGGG fϑ(GGG). It is clear that minGGG fϑ(GGG) is
equivalent to

min
GGG

fϑ(GGG) = min
GGG

M,N∑
i=1,j=1

min(g2i,j , ϑ
2)

=

M,N∑
i=1,j=1

min
gi,j

min(g2i,j , ϑ
2). (45)

That is, if each entry attains minimum, the function value
achieves minimum. Therefore, we focus on one entry, say,
g, without loss of generality. In accordance to Lemma 3, we
know that fϑ(g) results in convex ϕ(g) = g2 − min(g2, ϑ2)
with g ∈ (−∞,+∞). It is possible to make an assumption
that there exists hϑ(s) to render ψ(s) = s2 + hϑ(s) convex.
Thus, we have

hϑ(s) =


sup
g

(−(g − s)2 + g2), |g| < ϑ,

sup
g

(−(g − s)2 + ϑ2), |g| ≥ ϑ,

=

{
−(ϑ− |s|)2 + ϑ2, |s| < ϑ,

ϑ2, |s| ≥ ϑ.
(46)

We then plug (46) into ψ(s) = s2 +hϑ(s), and know that the
resultant ψ(s) is convex. Therefore, fϑ(g) and hϑ(s) make
Lemma 1 hold, resulting in

fϑ(g) = inf
s

(
(g − s)2 + hϑ(s)

)
. (47)

Since l(s) = (g − s)2 + hϑ(s) with s ∈ (−∞,+∞) is
continuous, we have

min
g

fϑ(g) = min
g

inf
s

(
(g − s)2 + hϑ(s)

)
= min

g,s

(
(g − s)2 + hϑ(s)

)
. (48)
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Therefore, minGGG fϑ(GGG) is equivalent to

min
GGG

fϑ(GGG) =

M,N∑
i=1,j=1

min
gi,j ,si,j

(
(gi,j − si,j)

2 + hϑ(si,j)
)

= min
GGG,SSS

M,N∑
i=1,j=1

(
(gi,j − si,j)

2 + hϑ(si,j)
)

= min
GGG,SSS

(
∥GGG−SSS∥2F + hϑ(SSS)

)
. (49)

The proof is complete. ■

APPENDIX B
PROOF OF LEMMA 2

min
SSS

(
∥GGG−SSS∥2F + hϑ(SSS)

)
=min

SSS

M,N∑
i=1,j=1

(
(gi,j − si,j)

2 + hϑ(si,j)
)

=

M,N∑
i=1,j=1

min
si,j

(
(gi,j − si,j)

2 + hϑ(si,j)
)

(50)

Similar to the proof of Lemma 1, we focus on one entry, say,
s, resulting in

s∗ = argmin
s

φ(s)

=

argmin
s

g2 − 2gs+ 2ϑ|s|, |s| < ϑ,

argmin
s

(g − s)2 + ϑ2 |s| ≥ ϑ,

=


argmin

s
g2 − 2s(g − ϑ), 0 ≤ s < ϑ,

argmin
s

g2 − 2s(g + ϑ), −ϑ < s < 0,

argmin
s

(g − s)2 + ϑ2, |s| ≥ ϑ,

=

{
0, |g| < ϑ,

g, |g| ≥ ϑ.
(51)

Although hϑ(s) is nonconvex, φ(s) is convex since ψ(s) =
s2+hϑ(s) is convex according to Lemma 3. As a result, (51)
is the optimal solution.

Therefore, the optimal solution of (50) is

SSS∗(i, j) = Tϑ(gi,j) =

{
0, |gi,j | < ϑ,

gi,j , |gi,j | ≥ ϑ.
(52)

Moreover, for s∗ = gi,j with |gi,j | ≥ ϑ, the subgradient
is 2(gi,j − s∗) = 0. For s∗ = 0 such that |s∗| < ϑ and
|gi,j | < ϑ, the subgradient is [−(gi,j + ϑ), ϑ− gi,j ], such that
0 ∈ [−(gi,j + ϑ), ϑ− gi,j ]. The proof is complete. ■

APPENDIX C
PROOF OF THEOREM 1

A. Proof of Property (i)

It is clear that the objective function value is affected by four
variables, namely, ϑk, SSSk, ZZZk and YYY k. In Lϑk(YYY k,ZZZk,SSSk),

only the term of hϑk(SSSk) is related to ϑk and thus we compute
the partial derivative of hϑk(SSSk) w.r.t. ϑ as

∂hϑ(s
k
i,j)

∂ϑ
=

{
2|ski,j |, |ski,j | < ϑk,

2ϑk, |ski,j | ≥ ϑk,
(53)

where ϑk ≥ 0 and thus we have

∂Lϑk(YYY k,ZZZk,SSSk)

∂ϑ
=

M,N∑
i=1,j=1

∂hϑk(ski,j)

∂ϑ
≥ 0, (54)

which indicates that Lϑk+1(YYY k,ZZZk,SSSk) ≤ Lϑk(YYY k,ZZZk,SSSk)
with ϑk+1 ≤ ϑk. From (32), it is known that ϑk+1 ≤ ϑk must
hold and thus we attain

Lϑk+1(YYY k,ZZZk,SSSk) ≤ Lϑk(YYY k,ZZZk,SSSk). (55)

From Lemma 2, it is known that SSSk+1 is an optimal solution
to minSSS Lϑk+1(YYY k,ZZZk,SSS), resulting in

Lϑk+1(YYY k,ZZZk,SSSk+1) ≤ Lϑk+1(YYY k,ZZZk,SSSk). (56)

Furthermore, ZZZk+1 is the optimal solution to (28b), leading
to

Lϑk+1(YYY k,ZZZk+1,SSSk+1)+µ∥ZZZk+1 −ZZZk∥2F
≤ Lϑk+1(YYY k,ZZZk,SSSk+1)

⇔ Lϑk+1(YYY k,ZZZk+1,SSSk+1)−Lϑk+1(YYY k,ZZZk,SSSk+1)

≤ −µ∥ZZZk+1 −ZZZk∥2F . (57)

Similarly, for the update of YYY k, we have

Lϑk+1(YYY k+1,ZZZk+1,SSSk+1)+µ∥YYY k+1 − YYY k∥2F
≤ Lϑk+1(YYY k,ZZZk+1,SSSk+1)

⇔ Lϑk+1(YYY k+1,ZZZk+1,SSSk+1)−Lϑk+1(YYY k,ZZZk+1,SSSk+1)

≤ −µ∥YYY k+1 − YYY k∥2F . (58)

Combining (55), (56) and (58) yields

Lϑk+1(YYY k+1,ZZZk+1,SSSk+1)− Lϑk(YYY k,ZZZk,SSSk)

≤ −µ
(
∥ZZZk+1 −ZZZk∥2F + ∥YYY k+1 − YYY k∥2F

)
. (59)

This leads to

Lϑk+1(YYY k+1,ZZZk+1,SSSk+1) ≤ Lϑk(YYY k,ZZZk,SSSk). (60)

Therefore, Lϑk(YYY k,ZZZk,SSSk) is monotonically nonincreasing.

B. Proof of Property (ii)

Based on the definition of Lϑk(YYY k,ZZZk,SSSk), it is easy
to know that limk→∞ Lϑk(YYY k,ZZZk,SSSk) ≥ 0. Thereby, the
objective function value is lower bounded.

In accordance to Properties (i) and (ii), we obtain the
conclusion that {Lϑk(YYY k,ZZZk,SSSk)}k∈N is convergent. The
proof is complete. ■
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APPENDIX D
PROOF OF THEOREM 2

A. Proof of Property (i)

Before analyzing the boundedness of (YYY k,ZZZk,SSSk), we
introduce a function:

L̃ϑk(YYY ,ZZZ,SSSk) = Lϑk(YYY k,ZZZk,SSSk)

+ µ
(
∥ZZZk −ZZZ∥2F + ∥YYY k − YYY ∥2F

)
. (61)

It is easy to attain the following equalities:

L̃ϑk(YYY k,ZZZk,SSSk) = Lϑk(YYY k,ZZZk,SSSk),

L̃ϑk+1(YYY k,ZZZk,SSSk) = Lϑk+1(YYY k,ZZZk,SSSk),

L̃ϑk+1(YYY k,ZZZk,SSSk+1) = Lϑk+1(YYY k,ZZZk,SSSk+1). (62)

Given any initialization such that Lϑ1(YYY 1,ZZZ1,SSS1) is finite,
then from (56) and (58), we have

L̃ϑk+1(YYY k,ZZZk+1,SSSk+1) ≤ Lϑk+1(YYY k,ZZZk,SSSk+1),

L̃ϑk+1(YYY k+1,ZZZk+1,SSSk+1) ≤ Lϑk+1(YYY k,ZZZk+1,SSSk+1). (63)

From Theorem 1, it is known that Lϑk(YYY k,ZZZk,SSSk) ≤
Lϑ1(YYY 1,ZZZ1,SSS1) and hence L̃ϑk(YYY k,ZZZk,SSSk) is upper
bounded. Moreover, it is clear that L̃ϑk(YYY k,ZZZk,SSSk) is lower
bounded.

Note that ZZZk and YYY k are updated by (28b) and (28c). Given
∥ZZZ1∥F < ∞ and ∥YYY 1∥F < ∞, if there exists ∥ZZZk∥F →
∞ or ∥YYY k∥F → ∞, we must have L̃ϑk(YYY k,ZZZk,SSSk) → ∞,
which leads to a contradiction. Thereby, {ZZZk} and {YYY k} are
bounded.

Furthermore, bounded {ZZZk} and {YYY k} yield bounded
{GGGk}. It is easy to know that if ∥SSSk∥F → ∞,
Lϑk(YYY k,ZZZk,SSSk) → ∞, contradicting Theorem 1. Thereby,
{SSSk} is also bounded.

As a result, (YYY k,ZZZk,SSSk) is bounded.

B. Proof of Property (ii)

For (59), by induction on k, we get

K∑
k=1

µ
(
∥ZZZk+1 −ZZZk∥2F + ∥YYY k+1 − YYY k∥2F

)
≤ Lϑ1(YYY 1,ZZZ1,SSS1)− Lϑk+1(YYY k+1,ZZZk+1,SSSk+1). (64)

In addition, since Lϑk(YYY k,ZZZk,SSSk) is convergent, we have

lim
K→∞

K∑
k=1

µ
(
∥ZZZk+1 −ZZZk∥2F + ∥YYY k+1 − YYY k∥2F

)
<∞,

(65)

which leads to

lim
K→∞

K∑
k=1

∥ZZZk+1 −ZZZk
1∥2F <∞, (66a)

lim
K→∞

K∑
k=1

∥YYY k+1 − YYY k∥2F <∞. (66b)

Thereby, we get

lim
k→∞

∥ZZZk+1
1 −ZZZk

1∥F = 0, (67a)

lim
k→∞

∥YYY k+1 − YYY k∥F = 0. (67b)

Furthermore, since GGGk = XXX − YYY kZZZk, in accordance to (67),
we obtain

lim
k→∞

∥GGGk+1 −GGGk∥F = 0. (68)

Based on (23) and (24), we have

lim
k→∞

|ϑk+1 − ϑk| = 0. (69)

In accordance to Lemma (2), we get

lim
k→∞

∥SSSk+1 −SSSk∥F = 0. (70)

Combined with Property (i), we obtain the conclusion that
there exists a subsequence of (YYY k,ZZZk,SSSk) to be convergent:

lim
ki→∞

(YYY ki ,ZZZki ,SSSki) = (YYY ∗,ZZZ∗,SSS∗), (71)

where (YYY ∗,ZZZ∗,SSS∗) is an accumulation point. The proof is
complete. ■

C. Property (iii)

Prior to the proof, we introduce the critical point definition
in Lemma 4.

Lemma 4. [59]: Given a function δ(x), then x∗ is a critical
point if x∗ meets one of the following statements:

(i) If δ(x) is differentiable, ∇δ(x∗) = 0.
(ii) If δ(x) is not differentiable, 0 ∈ ∂δ(x∗) where ∂φ(x∗)

is the subgradient.

We denote Lϑ(YYY ,ZZZ,SSS) as L(YYY ,ZZZ,SSS) for concise expres-
sion. From (28a) to (28c), we have

∂L(YYY k,ZZZk,SSSk+1)

∂SSS
∋ 000, (72a)

∂L(YYY k,ZZZk+1,SSSk+1)

∂ZZZ
+2µ(ZZZk+1−ZZZk) = 000, (72b)

∂L(YYY k+1,ZZZk+1,SSSk+1)

∂YYY
+2µ(YYY k+1−YYY k) = 000, (72c)

We then rewrite (72b)–(72c) as

∂L(YYY k+1,ZZZk+1,SSSk+1)

∂ZZZ
− ∂L(YYY k,ZZZk+1,SSSk+1)

∂ZZZ

− 2µ(ZZZk+1−ZZZk) =
∂L(YYY k+1,ZZZk+1,SSSk+1)

∂ZZZ
(73a)

− 2µ(YYY k+1−YYY k) =
∂L(YYY k+1,ZZZk+1,SSSk+1)

∂YYY
(73b)
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It is clear that the derivatives of L(YYY k,ZZZk,SSSk) w.r.t.
ZZZ and YYY are continuous. Since limki→∞(YYY ki ,ZZZki ,SSSki) =
(YYY ∗,ZZZ∗,SSS∗), we have

000 ∈ lim
ki→∞

∂L(YYY ki ,ZZZki ,SSSki+1)

∂SSS

= lim
ki→∞

∂L(YYY ki+1,ZZZki+1,SSSki+1)

∂SSS
, (74a)

lim
ki→∞

(∂L(YYY ki+1,ZZZki+1,SSSki+1)

∂ZZZ
− ∂L(YYY ki ,ZZZki+1,SSSki+1)

∂ZZZ

−2µ(ZZZki+1−ZZZki)
)
= 000, (74b)

lim
ki→∞

−2µ(YYY ki+1−YYY ki) = 000, (74c)

which indicates

∂L(YYY ∗,ZZZ∗,SSS∗)

∂SSS
∋ 000, (75a)

∂L(YYY ∗,ZZZ∗,SSS∗)

∂ZZZ
= 000, (75b)

∂L(YYY ∗,ZZZ∗,SSS∗)

∂YYY
= 000. (75c)

Therefore, (YYY ∗,ZZZ∗,SSS∗) is a critical point.
In conclusion, there exists a subsequence (YYY ki ,ZZZki ,SSSki)

converging a critical point. The proof is complete. ■
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