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Abstract—Graph signal processing refers to dealing with
irregularly structured data. Compared with traditional signal
processing, it can preserve the complex interactions within
irregular data. In this work, we devise a robust algorithm to
recover band-limited graph signals in the presence of impulsive
noise. First, the observed data vector is recast, such that the noise
component is divided into two vectors, representing the dense-
noise component and sparse outliers, respectively. We then exploit
ℓ0-norm to characterize the sparse vector as a regularization
term. Alternating minimization is subsequently adopted as the
solver for the resultant optimization problem. Besides, we suggest
an approach to automatically update the penalty parameter of
the ℓ0-norm term. In addition, we analyze the computational
complexity and the steady-state convergence of our algorithm.
Experimental results on synthetic and temperature data exhibit
the superiority of the developed method over state-of-the-art
algorithms in impulsive noise environments in terms of recovery
accuracy and convergence speed.

Index Terms—Graph signal processing, impulsive noise, ℓ0-
norm, robust recovery

I. INTRODUCTION

Graph signal processing (GSP) aims at handling multi-
variate irregular data [1] in a topological structure, such as
regional temperature [2], traffic networks [3], macroeconomic
models [4], social networks [5], and neuroimaging data [6].
Traditional signal processing methodologies attempt to model
such data using regular structures in the form of vectors,
matrices, or tensors, while GSP defines the data over a
graph [7]. Therefore, GSP is able to consider both the structure
(edge connections) and the data (values at elementary units).

As the earliest adaptive graph method, graph least mean
squares (GLMS) [8] employs the LMS algorithm [9] to recover
band-limited graph signals. Analogously, graph recursive least
squares (GRLS) [10] extends the RLS technique [11] to a
graph formulation for boosting the convergence speed. How-
ever, it suffers from high computational complexity, which
imposes a practical challenge with a large number of nodes.
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To make a balance, graph normalized LMS (GNLMS) is
proposed [2], resulting in faster convergence than GLMS, and
lower complexity than GRLS. On the other hand, distributed
solutions have been developed to process data collected in
a distributed network, including adapt-then-combine diffusion
method (ATC) [12], graph diffusion preconditioned LMS [13],
and graph kernel LMS [14].

The aforementioned algorithms are derived under the ℓ2-
norm minimization framework, indicating that they rest on
the Gaussian noise assumption. Therefore, their performance
might degrade when the observed data are corrupted by non-
Gaussian noise particularly with impulsive characteristics. In
fact, impulsive noise frequently appears in real-world scenar-
ios, including target estimation [15] and underwater commu-
nications [16]. To ensure reliable performance in impulsive
noise scenario, GLM pth power (GLMP) [17] adopts the ℓp-
norm [18] to restore band-limited graph signals. Meanwhile,
the graph-sign algorithm [19] employs the ℓ1-norm as its loss
function, leading to a lower computational complexity than
GLMP. Similar to GNLMS evolved from GLMS, GNLM pth
power (GNLMP) [20] is suggested to enhance the convergence
speed. That is to say, most existing robust methods for graph
signal recovery adopt ℓp-norm to handle outliers. However,
in practice, only a small portion of entries is corrupted by
anomalies, and applying the ℓp-norm to all data including those
without outliers will result in suboptimal performance.

In this work, we recast the observed graph signal model to
effectively resist impulsive noise. The gross noise is modeled
as the sum of two components, namely, dense and sparse
constituents. The recovery problem is then formulated using
ℓ2-norm and ℓ0-norm where the former is to handle Gaussian
noise and the latter is to provide robustness against outliers
in the observations. In addition, we adopt alternating min-
imization to tackle the resultant optimization problem. The
computational complexity and steady-state convergence of the
algorithm are also analyzed. Experimental results on synthetic
data demonstrate that the proposed methodology attains a
lower steady-state error and a faster convergence speed than
the state-of-the-art algorithms in the presence of outliers.
Meanwhile, in recovering temperature data, our method is
superior to the existing methods in impulsive noise scenario.

The remainder of this paper is organized as follows. We
introduce preliminaries and related works in Section II. In
Section III, we re-express the observed data model and then
reformulate the recovery problem. The suggested approach is
then presented, followed by its computational complexity and
steady-state convergence analysis. Numerical examples are
included to evaluate our method by comparing with existing
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algorithms in Section IV. Finally, concluding remarks are
given in Section V.

II. BACKGROUND
A. Preliminaries

Given a node set V = {1, 2, · · · , N} and a weighted edge
set ε = {ai,j}i,j∈V , where ai,j is the edge weight from nodes
i to j, such that if there is a link, ai,j > 0, or ai,j = 0
otherwise [1]. Then, a graph is defined as G = (V, ε), and its
adjacency matrix is represented by AAA ∈ RN×N whose (i, j)
entry is ai,j . Note that AAA is a symmetric matrix when the
graph is undirected. Besides, its degree matrix is denoted as
KKK = diag(kkk) ∈ RN×N where ki =

∑N
j=1 ai,j . Moreover,

the graph Laplacian matrix is defined as LLL =KKK −AAA, and its
eigenvalue decomposition is LLL = UUUΛΛΛUUUT , where UUU ∈ RN×N

is the orthonormal eigenvector matrix and ΛΛΛ ∈ RN×N is a di-
agonal matrix whose diagonal elements are the corresponding
eigenvalues λi [8].

Analogous to Fourier transform (FT), graph FT (GFT)
converts a graph signal xxx ∈ RN from the vertex domain
into the spectral domain: ϵϵϵ = UUUTxxx [8]. Besides, the inverse
GFT (IGFT) is represented by xxx = UUUϵϵϵ, which transforms
a graph signal from the spectral domain into the vertex
domain [8]. Given a subset of vertices S ⊆ V , the vertex-
limiting (or sampling) operator is defined as DDDS which is a
diagonal matrix and its ith entry is one, if i ∈ S , or zero
otherwise. Similarly, considering a subset of frequency indices
F = {i ∈ {1, · · · , N} : ϵi ̸= 0}, the filtering operator is given
as BBBF = UUUΣΣΣFUUU

T , where ΣΣΣF ∈ RN×N is a diagonal matrix,
such that its ith entry is one, if i ∈ F , or zero otherwise [8]. It
is worth mentioning that both DDDS and BBBF are self-adjoint and
idempotent. If a graph signal is band-limited on F , BBBFxxx = xxx
holds [12].

We consider a band-limited graph signal xxx0 ∈ RN and its
observations at time instant n are modeled as [8]:

yyy[n] =DDDS(xxx0 +www[n]) =DDDSBBBFxxx0 +DDDSwww[n], (1)

where www[n] ∈ RN is the noise vector which is assumed to be
independent and identically distributed among different time
instants. Furthermore, www[n] is assumed zero-mean [20].

B. Related Works
To recover the band-limited xxx0, GLMS [8] formulates the

restoration problem as

min
xxx

E{∥yyy[n]−DDDSBBBFxxx∥22}, s.t. BBBFxxx = xxx, (2)

where E{·} is the expectation operator. Then, stochastic gra-
dient descent [21] is adopted as the solver, resulting in

xxx[n+ 1] = xxx[n] + µBBBFDDDS(yyy[n]−DDDSBBBFxxx[n]) (3a)
= xxx[n] + µBBBFDDDS(yyy[n]− xxx[n]), (3b)

where xxx[n] is the instantaneous estimate of xxx0 at the nth
iteration and µ > 0 is the step-size (or learning rate). Since
GLMS exploits ℓ2-norm as the loss function, its recovery
performance might be degraded in the presence of outliers.

To handle anomalies, GLMP [17] suggests employing the
ℓp-norm with 1 < p < 2, leading to

min
xxx

E{∥yyy[n]−DDDSBBBFxxx∥pp}, s.t. BBBFxxx = xxx. (4)

Since the ℓp-norm with p ∈ (1, 2) is convex and smooth, the
GLMP also exploits stochastic gradient descent to solve (4).

III. PROPOSED ALGORITHM

A. Algorithm Development

We first model the impulsive noise as a sum of the dense-
noise constituent and sparse component, resulting in

yyy[n] =DDDS(xxx0 +www[n]) =DDDS(xxx0 + d̃dd[n] + s̃ss[n]) (5a)

=DDDSBBBFxxx0 + d̂dd[n] + ŝss[n], (5b)

where d̃dd[n] ∈ RN and s̃ss[n] ∈ RN are dense vector and
sparse vector, respectively, while d̂dd[n] = DDDSd̃dd[n] ∈ RN and
ŝss[n] = DDDSs̃ss[n] ∈ RN . Due to the sampling operator DDDS ,
the sparsity of ŝss[n] is higher than that of s̃ss[n]. Compared
with (1), (5b) enables to exploit two norms to individually
handle different noise components. We suggest adopting the
ℓ0-norm to accurately characterize ŝss[n]. For n̂nn[n], we assume
that the sampled entries obey the Gaussian distribution and
thus ℓ2-norm is employed. Consequently, the recovery problem
is formulated as:

min
xxx,sss

E{∥yyy[n]−DDDSBBBFxxx−sss∥22 + λ∥sss∥0}, s.t. BBBFxxx = xxx, (6)

where λ > 0 is the penalty parameter to control the sparsity
of sss and ∥sss∥0 is the ℓ0-norm to count the number of non-zero
entries in sss. Since (6) contains two variables to be determined,
we exploit the alternating minimization concept [22], [23] to
handle it, leading to

sss[n] = argmin
sss

∥yyy[n]−DDDSBBBFxxx[n]− sss∥22 + λ∥sss∥0, (7a)

xxx[n+ 1] = xxx[n] + µBBBFDDDS(yyy[n]− xxx[n]− sss[n]). (7b)

For (7a), an optimal solution is [24]:

sss[n] = Tλ(ŵww[n]) =

{
ŵ[n]i, if |ŵ[n]i| ≥

√
λ,

0, otherwise.
(8)

where ŵww[n] = yyy[n] −DDDSBBBFxxx[n] and ŵ[n]i is the ith entry
of ŵww[n]. That is, given yyy[n] and xxx[n], sss[n] depends on the
selection of λ. We first explain (7a) and (7b), and then discuss
how to set λ. For (7a), it updates sss while fixing xxx[n], such
that outliers can be separated from the fitting error, namely,
ŵww[n]. In iterative multi-variable optimization, it is often not
so beneficial to optimize one variable perfectly while fixing
the remaining variables, then the other, and repeat the whole
procedure [25]. This is because a perfect optimization of
one part is rendered obsolete when the other part is altered.
Therefore, (7b) exploits gradient descent to update xxx with one
iteration.

In (8),
√
λ can be deemed as the threshold to differentiate

normal entries and anomalies in the residual ŵww[n]. Under the
assumption that the mean of ŵww[n] is 0, −

√
λ ≤ wi ≤

√
λ

can be considered as a confidence interval to recognize out-
liers. Therefore, we suggest adopting the normalized median
absolute deviation method [26], [27] to determine

√
λ:

√
λ = ζ × 1.4826×Med(|ŵww[n]−Med(ŵww[n])|), (9)

where Med(·) is the sample median operator and ζ controls the
confidence interval range. Using a rule of thumb, we suggest
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Algorithm 1 GAM for robust graph signal recovery

Input: yyy[n], DDDS , BBBF , µ, ζ, and maximum iteration number
Nmax

Initialize: xxx[0] = 000
for n = 1, 2, · · · do

1. Update λ = (ζ×1.4826×Med(|ŵww[n]−Med(ŵww[n])|))2
2. Update sss[n] = Tλ(yyy[n]−DDDSBBBFxxx[n])
3. Update xxx[n+1] = xxx[n]+µBBBFDDDS(yyy[n]−xxx[n]−sss[n])
Stop if n = Nmax.

end for
Output: xxx[n+ 1].

setting the value of ζ between 2 and 5. Specifically, if the
noise distribution has a heavy tail, ζ should be small. This is
because a small ζ generates a narrow confidence interval to
identify more outliers. When the tail is light, ζ can be set as
a large value.

The proposed method is referred to as graph alternating
minimization (GAM) whose procedure is summarized in Al-
gorithm 1.

B. Computational Complexity

In this subsection, we analyze the computational complexity
of the developed method. For λ, Med(·) operator requires
performing the sorting procedure and the complexity of the
heap sort method is O(N log(N)). Besides, the complexity of
updating sss and xxx is dominated by the operation of BBBFDDDS .
In general, BBBFDDDS requires the complexity of O(N3). How-
ever, since DDDS is a diagonal matrix, its complexity reduces
to O(N2). Therefore, the overall complexity is O(N2 +
N log(N)) per iteration.

Table I tabulates the computational requirements of the
proposed method as well as GLMP and GNLM, and it is clear
that GAM involves the minimum complexity.

TABLE I: Complexity comparison of robust algorithms

Method Computational complexity

GAM O(N2 +N log(N))

GLMP O(N3)

GNLMP O(N3 +N log(N))

C. Steady-State Convergence

To study the steady-state convergence behavior, we first
introduce the following lemma.

Lemma 1. For truncated operator Tλ(ŵww[n]), it is equivalent
to D̃DD[n]ŵww[n], where D̃DD[n] is a binary diagonal matrix, such

that di,i =

{
1, if |ŵi[n]| ≥

√
λ,

0, otherwise.
Proof: It is easy to verify Lemma 1 since the truncated
operator retains the entries with large magnitudes and sets
the rest to zero.

Then, the steady-state convergence behavior is analyzed in
the following theorem.

Theorem 1. If the learning rate satisfies:

0 < µ <
2

δ̃max

, (10)

where δ̃max is the largest eigenvalue of BBBDDDS(III − D̃DD[i]) for
i = 1, · · · , n, the steady-state mean-squared deviation (MSD)
of GAM is convergent.
The proof is provided in the supplementary material.

IV. EXPERIMENTAL RESULTS

In this section, we compare GAM with GLMS [8],
GNLMS [2], GLMP [17], and GNLMP [20] on two different
impulsive noise models, i.e., symmetric α-stable (SαS) distri-
bution and Gaussian mixture model (GMM). The characteristic
function of the SαS distribution with zero-location is φ(ω) =
exp(−γα|ω|α) [28], where 0 < α ≤ 2 is the characteristic
exponent that describes the tail of the distribution and γ > 0
is a scale factor. When α < 2, the SαS distribution exhibits
heavy tails and thus is impulsive [29]. On the other hand,
the probability density function (PDF) of two-term GMM is
pω(ω)=

c1√
2πσ1

exp
(
− ω2

2σ2
1

)
+ c2√

2πσ2
exp

(
− ω2

2σ2
2

)
[30], where

c1+c2 = 1 with 0 < ci < 1, σ2
1 and σ2

2 are the corresponding
variances. When σ2

1 ≥ σ2
2 and c1 < c2, GMM indicates that

sparse large samples with σ2
1 and c1 are embedded in Gaussian

background noise with σ2
2 and c2. We set σ2

1 = 100σ2
2 and

c1 = 0.1, signifying that 10% noise samples are considered as
outliers. Besides, the signal-to-noise ratio (SNR) in dB is de-
fined as SNR = 10 log10

(
∥xxx0∥2

2

N(c1σ2
1+c2σ2

2)

)
, where c1σ

2
1 + c2σ

2
2

is the total noise variance.
The steady-state MSD is adopted as the performance metric,

defined as

MSD[n] = 10 log10(E{∥xxx[n]− xxx0∥22}), (11)

that is, the average MDS at the nth step based on 100
independent trials.
A. Synthetic Data

We adopt the Python PyGSP package [31] to generate a
random sensor graph with 50 nodes, where AAA ∈ R50×50

and xxx0 ∈ R50. As this xxx0 is not bandlimited, we exploit
the strategy in [10] to make it bandlimited, and produce
BBBF ∈ R50×50 and DDDS ∈ R50×50 with |F| = 20 and |S| = 30.
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(a) MSD versus iteration number (b) Recovery amplitude
versus iteration number

Fig. 1: Performance comparison in SαS noise with α = 1.2
and γ = 0.1
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(a) GNLMP versus GAM (b) GLMP versus GAM

Fig. 2: Phase transition in SαS noise.
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Fig. 3: MSD versus SNR in GMM noise.

In addition, impulsive noise vector www ∈ R50 is generated using
SαS distribution or GMM. Note that the parameter ζ of our
method is set as 4, while the values of p of the ℓp-norm-based
algorithms follow their recommendations.

We first compare the proposed method with the competing
algorithms in SαS noise. Fig. 1 (a) shows MSD versus iteration
number. The learning rates of GLMP, and GNLMP are set as
0.1 and 0.028 which are their recommendation values. Then,
the learning rate of GAM is chosen as 0.1 such that it attains
a comparable convergence speed. We observe that the GAM,
GLMP, and GNLMP achieve better recovery performance than
GLMS and GNLMS. In addition, the GAM attains lower
MSDs than the existing robust methods. On the other hand,
we plot the recovery amplitude of one node in Fig. 1 (b). It is
observed that the GAM quickly recovers the node amplitude
and attains smaller MSDs than its competitors.

Moreover, we investigate recovery performance versus noise
intensity in SαS noise or GMM noise. Fig. 2 depicts the results
of three robust algorithms in SαS noise. Since the SNR of the
SαS noise is meaningless with α < 2, we exploit different
γ and α to control noise intensity. It is observed that the
GAM attains lower MSDs than GNLMP and GLMP in the
whole ranges of γ and α. Besides, when noise is strong, the
superiority of GAM is significant. Fig. 3 plots MSD versus
SNR in GMM noise. We see that GAM, GNLMP, and GLMP
achieve better recovery performance than GLMS and GNLMS.
In addition, GAM attains smaller MSDs than the remaining
robust methods.

B. Temperature Data

We further compare different methods using temperature
data, namely, the graph signal of hourly temperature collected
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α = 1.2 and γ = 0.1 (b) GMM noise with SNR = 1

Fig. 4: MSD versus iteration number on temperature data.
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Fig. 5: Recovery amplitude of a selected node versus iteration
number in impulsive noise.

from national centers for environmental information1. The
graph topology is generated using the approach in [2], result-
ing in 197 nodes and 95 time slot numbers, respectively. These
temperature data are then added with the synthetic impulsive
noise in the following experiments.

Figs. 4 (a) and (b) plot the recovery performance in the
presence of SαS noise and GMM noise, respectively. It is
observed that the proposed method achieves lower MSDs than
its competitors in both cases.

Moreover, Figs. 5 (a) and (b) show the recovery behavior of
one node with SαS noise and GMM noise, respectively. It is
seen that our algorithm attains better fitting performance than
the existing methods in both noise environments.

V. CONCLUSION

In this work, the noise component of the observed graph
data vector corrupted by impulsive noise is considered to be
the sum of Gaussian noise and sparse outliers. We exploit
ℓ2-norm and ℓ0-norm to handle Gaussian noise and sparse
anomalies, respectively, in order to attain robust recovery.
Alternating minimization is applied to solve the resultant
problem. Besides, we propose a strategy to update the penalty
parameter of the ℓ0-norm regularization term to boost recov-
ery. In addition, the algorithm computational complexity and
steady-state convergence are analyzed. Numerical results on
synthetic and temperature data demonstrate that the devised
method attains higher recovery accuracy than existing algo-
rithms in SαS noise or GMM noise.

1https://www.ncei.noaa.gov/data/normals-hourly/2006-2020/
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