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Abstract—Matrix completion (MC) aims at recovering miss-
ing entries given an incomplete matrix. Existing algorithms
for MC are mainly designed for noiseless or Gaussian noise
scenarios and thus they are not robust to impulsive noise. For
outlier resistance, entry-wise ℓp-norm with 0 < p < 2 and
M-estimation are two popular approaches. Yet the optimum
selection of p for the entry-wise ℓp-norm based methods is
still an open problem. Besides, M-estimation is limited by a
breakdown point, that is, the largest proportion of outliers. In
this paper, we adopt entry-wise ℓ0-norm, namely, the number
of nonzero entries in a matrix, to separate anomalies from
the observed matrix. Prior to separation, Laplacian kernel is
exploited for outlier detection, which provides a strategy to au-
tomatically update the entry-wise ℓ0-norm penalty parameter.
The resultant multi-variable optimization problem is addressed
by block coordinate descent (BCD), yielding ℓ0-BCD and ℓ0-
BCD-F. The former detects and separates outliers, as well as
its convergence is guaranteed. In contrast, the latter attempts
to treat outlier-contaminated elements as missing entries,
which leads to higher computational efficiency. Making use of
majorization-minimization (MM), we further propose ℓ0-BCD-
MM and ℓ0-BCD-MM-F for robust nonnegative MC where the
nonnegativity constraint is handled by a closed-form update.
Experimental results of image inpainting and hyperspectral
image recovery demonstrate that the suggested algorithms out-
perform several state-of-the-art methods in terms of recovery
accuracy and computational efficiency.

Index Terms—Matrix completion, nonnegative matrix com-
pletion, robust recovery, outlier detection, ℓ0-norm optimiza-
tion.

I. Introduction

MATRIX completion (MC) refers to restoring the
missing entries of an incomplete matrix by making

use of the low-rank property, and has various applications,
including machine learning [1], system identification [2],
computer vision [3], image inpainting [4], and target
estimation [5]. This is because many real-world signals
can be represented/approximated as low-rank matrices.
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For instance, image data can be modeled as low-rank
matrices since the main information is dominated by the
largest singular values, associating with their left and right
singular vectors [6].

Mathematically, MC is formulated as a constrained rank
minimization problem [7]. Unfortunately, it is NP-hard as
the rank function is both nonconvex and discrete. The
nuclear norm has been proved to be a convex envelop
of the rank function [8] and hence can be used as its
substitute. MC based on the nuclear norm has been han-
dled by singular value thresholding (SVT) [9], fixed point
continuation (FPC) [10], accelerated proximal gradient
(APG) [11] and truncated nuclear norm regularization
(TNNR) [12]. As singular value decomposition (SVD) is
required, the aforementioned methods are computation-
ally demanding, especially for large-size matrices.

On the other hand, the nuclear norm, which is equal
to the sum of all singular values, may cause the solution
to deviate seriously from the ground truth because of its
slack relaxation. To handle this issue, weighted nuclear
norm method (WNNM) [13] assigns different weights
to the singular values. Besides, the capped trace norm
and Schatten p-norm are suggested to approximate the
rank function [14], [15], [16]. Although these two norms
have a better rank function approximation, they also
require SVD computation. Another way to avoid the slack
relaxation is to convert the rank minimization into a rank
constraint [17] and then use gradient projection to handle
the resultant problem. Since only the truncated SVD is
involved, its computational complexity is lower than those
implementing full SVD.

To avoid SVD computation, matrix factorization scheme
has been suggested for MC [18]. The basic idea is to exploit
the product of two much smaller matrices to represent
the objective matrix under the assumption that the
rank of target matrix is known. Low-rank matrix fitting
(LMaFit) [19] is first proposed using matrix factorization,
but its global convergence cannot be ensured. Subse-
quently, MC based on low-rank factorization is proved
to obtain the globally optimal solution under some mild
conditions [20]. Moreover, locally linear approximation
(LLA) [21] adopts the local structure of visual data for
recovery performance improvement. Recently, the online
robust matrix completion (ORMC) method [22] considers
the incomplete matrix containing several Gaussian noise-
contaminated columns, and adopts ℓ2,1-norm as the loss
function.

The above-mentioned algorithms can work well when
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the observed matrix is noise-free or corrupted by white
Gaussian noise. Although Gaussian distribution is the best
approximation to common noise, non-Gaussian distributed
noise has occurred in some fields [23]. For instance,
images may be corrupted by salt-and-pepper noise, and
communication channels may contain impulsive compo-
nents. To resist outliers, the entry-wise ℓp-norm with
0 < p < 2 has been adopted as the loss function, resulting
in the alternating projection (AP) [24], ℓp regression
(ℓp-reg) [25], and ℓp-norm based matching pursuit (ℓp-
MP) [26]. These approaches demonstrate outstanding
performance in the presence of gross errors. However, the
entry-wise ℓp-norm has two open problems. The first is
how to select the optimum p for the impulsive noise of a
certain intensity since the choice of p affects the recovery
performance. The second is that the entry-wise ℓp-norm
with 0 < p < 1 is nonsmooth and nonconvex, which
poses a challenge for optimization. Besides, the works
in [27], [28] suggest adopting the M-estimators to deal
with robust matrix completion (RMC). Nevertheless, M-
estimation has a breakdown point that depends on the
largest proportion of anomalies [29]. Moreover, Bayesian
approach has been exploited to solve RMC, which includes
the Bayesian estimator for noisy MC (BENMC) [30] and
variational Bayesian matrix factorization based on ℓ1-
norm (VBMFL1) [31]. Recently, the correntropy-induced
loss function and ℓ1-norm formulated as a regularization
term are applied for RMC [32], [33].

In applications such as blind recommender systems [34],
sensor calibration [35], and hyperspectral imaging [36],
[37], data are nonnegative. However, MC methods may
result in negative entries in the recovered matrix, which
violates the inherent data property. To handle this issue,
nonnegative matrix completion (NMC) approaches are
proposed, including matrix factorization with alternating
direction method of multipliers (MF-ADMM) [38], low-
rank approximation with ADMM (LRA-ADMM) [39], and
NMC using Nesterov iterations (NeNMC) [40]. Compared
with MC, NMC ensures that all entries of the recovered
matrix are nonnegative. However, most existing NMC
algorithms are not robust to outliers.

In this paper, we exploit the entry-wise ℓ0-norm, which
is equal to the number of nonzero entries, to separate
anomalies from the observed matrix. In addition, we com-
bine the entry-wise ℓ0-norm with the matrix factorization
strategy to formulate the RMC problem. Then, block
coordinate descent (BCD) [41] is adopted as the solver
for the resultant multi-variable optimization problem.
The developed algorithms, called ℓ0-BCD and ℓ0-BCD-F,
update one block with fixing the remaining blocks at each
iteration. The former detects and separates outliers from
the noisy matrix, while the latter considers the outlier-
contaminated elements as missing entries. Therefore, the
ℓ0-BCD-F has lower computational complexity than the
ℓ0-BCD. To detect outliers, Laplacian kernel is exploited,
resulting in an adaptive method to update the penalty
parameter of the ℓ0-norm. On the other hand, the above
scheme is applied to deal with robust NMC (RNMC),

yielding two algorithms, namely, ℓ0-BCD-MM and ℓ0-
BCD-MM-F. They use majorization-minimization (MM)
to handle the least squares problem with nonnegativity
constraint. Unlike the projected gradient descent whose
convergence depends on an appropriate choice of step-size,
the ℓ0-BCD-MM and ℓ0-BCD-MM-F provide a closed-
form update without this parameter. Our main contri-
butions are summarized as:

(i) The entry-wise ℓ0-norm is formulated as a penalty
term to separate anomalies. In addition, the Lapla-
cian kernel function is exploited to devise an outlier
detector for identifying anomalies, by which the
penalty parameter of the ℓ0-norm is automatically
updated. The proposed algorithms achieve a higher
recovery accuracy than existing approaches for syn-
thetic and real-world data in the presence of outliers.

(ii) A novel perspective is suggested to address RMC,
i.e., outlier-contaminated entries are considered as
missing elements. This reduces the algorithm com-
putational requirement, resulting in a faster variant,
namely, ℓ0-BCD-F. Its computational efficiency is
much higher than the existing techniques.

(iii) To tackle the nonnegative least squares problem in
RNMC, we adopt MM to develop a closed-form
update which is proved to meet the Karush-Kuhn-
Tucker (KKT) conditions. Compared with the pro-
jected gradient descent that requires an appropriate
value of step-size [42], our algorithm is parameter-
free.

The remainder of this paper is organized as follows.
In Section II, we introduce notations and preliminaries,
including problem formulation and representative solvers.
Two efficient algorithms for RMC, i.e., ℓ0-BCD and ℓ0-
BCD-F, are developed in Section III. In Section IV,
we propose ℓ0-BCD-MM and ℓ0-BCD-MM-F to tackle
RNMC. Numerical results based on synthetic and real-
world data are presented in Section V. Finally, Section VI
provides concluding remarks.

II. Overview of Related Work
A. Notations

Scalars, vectors, and matrices are represented by italic,
bold lower-case, and bold upper-case letters, respectively.
Besides, a matrix of ones is signified by 111. For matrices,
∥ · ∥∗ is the nuclear norm while ∥AAA∥F =

√∑m
i=1

∑n
j=1 a

2
i,j

is the Frobenius norm where ai,j is the (i, j) entry of
AAA ∈ Rm×n. The ∥AAA∥pp with 0 < p < 2 is calculated
using the sum of p power of all elements. The element-wise
absolute operation of AAA is represented by |AAA|. Moreover,
AAA ≥ 0 and AAA ⪰ 0 signify that AAA is a nonnegative
matrix and positive semidefinite matrix, respectively.
Furthermore, aaaTi is the ith row of AAA, while aaaj is the jth
column of AAA. For a vector aaa ∈ Rm, ∥aaa∥2 =

√∑m
i=1 a

2
i and

∥aaa∥1 =
∑m

i=1 |ai| are ℓ2-norm and ℓ1-norm, respectively.
In addition, dim(aaa) indicates the length of aaa. The entry-
wise ℓ0-norm for vectors and matrices is denoted by ∥ · ∥0
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which is the total number of nonzero entries. The pseudo-
inverse and transpose operators are signified by (·)† and
(·)T , respectively.

B. Matrix Completion Formulation
Consider an incomplete matrix XXXΩΩΩ ∈ Rm×n where ΩΩΩ ∈

Rm×n is a binary matrix, consisting of 0 and 1. Here, XXXΩΩΩ

denotes that XXX projects onto ΩΩΩ, resulting in

(XXXΩΩΩ)i,j =

{
xi,j , if Ωi,j = 1,

0, otherwise.
(1)

Ideally, the MC problem is formulated as a rank mini-
mization problem [7]:

min
MMM

rank(MMM) s.t. XXXΩΩΩ =MMMΩΩΩ. (2)

It means that MC aims at seeking MMM ∈ Rm×n with
minimum rank under the constraint where the entries of
the recovered and observed matrices in ΩΩΩ are equal. Yet
rank minimization is an NP-hard problem. One popular
and feasible method is to adopt matrix factorization [19],
leading to

min
UUU,VVV

∥(UUUVVV )ΩΩΩ −XXXΩΩΩ∥2F , (3)

where the recovered matrix is represented by the product
of two low-dimensional matrices, namely, UUU ∈ Rm×r

and VVV ∈ Rr×n. Herein, r is the rank of the recovered
matrix. Since (3) does not require computing SVD, it has
lower computational complexity compared to the nuclear
norm based algorithms. However, its performance will be
degraded when the observed entries involve gross errors.
The reason is that the Frobenius norm amplifies the power
of outliers which is much larger than that of the Gaussian
noise.

One of the prevailing approaches to resist outliers is to
use the entry-wise ℓp-norm with 0 < p < 2 [25]:

min
UUU,VVV

∥(UUUVVV )ΩΩΩ −XXXΩΩΩ∥pp. (4)

Consider a residual e = (UUUVVV )i,j − xi,j corresponding to
an outlier, we get |e|p < |e|2 with 0 < p < 2. That is, the
entry-wise ℓp-norm is able to weaken the impact of outliers
and thus the entry-wise ℓp-norm has better performance
than the Frobenius norm in impulsive noise environment.

Another approach for RMC is based on the maximum
correntropy criterion [32]:

min
UUU,VVV

∥(UUUVVV )ΩΩΩ −XXXΩΩΩ∥Gσ
, (5)

where ∥ · ∥Gσ
is the correntropy-induced loss function,

defined as

∥AAA∥Gσ
=

m∑
i=1

n∑
j=1

σ2

(
1− exp

(
−
a2i,j
2σ2

))
, (6)

where σ > 0 is the kernel width. Since solving (5) requires
a three-layer iterative procedure, the resultant algorithm
has relatively high computational complexity.

In addition, the entry-wise ℓ0-norm has been applied
for RMC [43], resulting in

min
MMM,EEE

∥MMMΩΩΩ −XXXΩΩΩ +EEEΩΩΩ∥2F +
α

2
∥MMM

Ω̃ΩΩ
∥2F ,

s.t. ∥EEE∥0 ≤ N0, ∥EEE∥2 ≤ KE , rank(MMM) ≤ r, (7)

where α > 0 is a penalty parameter, Ω̃ΩΩ is a subset
of ΩΩΩ and does not contain the indices of the outlier-
contaminated entries, N0 is a positive integer to limit
the number of outliers, and KE is a finite constant
to facilitate the convergence. However, the method to
solve (7) is computationally expensive since it requires
performing SVD. Besides, the number of anomalies should
be estimated in advance, which is a challenge for real-world
data.

C. Nonnegative Matrix Completion Formulation
Analogous to MC, NMC can be formulated as [38], [39]:

min
UUU,VVV

∥(UUUVVV )ΩΩΩ −XXXΩΩΩ∥2F , s.t. UUU ≥ 0,VVV ≥ 0, (8)

where UUU ≥ 0 and VVV ≥ 0 ensure the recovered matrix
nonnegative. In this work, we develop a method to
solve the nonnegativity constraint of RNMC. Prior to
introducing our idea, two existing approaches are first
reviewed. To facilitate presentation, we assume that ΩΩΩ = 111
in (8). In this way, we can obtain a special case of RNMC,
i.e., nonnegative low-rank matrix approximation.

The most famous method for nonnegative matrix fac-
torization is the multiplicative update [44]:

uk+1
i,j = uk

i,j

(XXXΩΩΩ(VVV
k)T )i,j

(UUUkVVV k(VVV k)T )i,j
, (9a)

vk+1
i,j = vki,j

((UUUk+1)TXXXΩΩΩ)i,j
((UUUk+1)TUUUk+1VVV k)i,j

. (9b)

Note that the solution to (9) is UUU > 0 and VVV > 0 which
is not strictly equivalent to UUU ≥ 0 and VVV ≥ 0. Moreover,
the convergence of the multiplicative update cannot be
ensured [45].

Another approach is to exploit projected gradient de-
scent [42], resulting in

UUUk+1=max
(
0,UUUk − η((UUUkVVV k)ΩΩΩ −XXXΩΩΩ)(VVV

k)T
)
, (10a)

VVV k+1=max
(
0,VVV k−η(UUUk+1)T ((UUUk+1VVV k)ΩΩΩ−XXXΩΩΩ)

)
,

(10b)

where η > 0 is the step-size. Compared with multiplicative
update, its convergence is guaranteed. But η should be
appropriately chosen to compromise between the conver-
gence speed and accuracy.

III. Proposed Algorithms for Robust Matrix Completion
In this section, two algorithms are proposed for RMC,

including a basic version and its fast variant. Besides, a
Laplacian kernel based anomaly detector is developed for
adaptively updating the penalty parameter.
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A. Algorithm Development
We consider that the impulsive noise comprises Gaus-

sian noise with small power and sparse impulses with large
power. Hence, XXXΩΩΩ that is corrupted by impulsive noise is
formulated as

XXXΩΩΩ = X̃XXΩΩΩ +GGGΩΩΩ +SSSΩΩΩ, (11)

where X̃XXΩΩΩ is the incomplete noise-free matrix, GGGΩΩΩ rep-
resents the Gaussian noise, and SSSΩΩΩ signifies the sparse
impulses. Based on matrix factorization, we recast the
RMC problem as

min
UUU,VVV ,SSS

∥XXXΩΩΩ − (UUUVVV )ΩΩΩ −SSSΩΩΩ∥2F + µ∥SSSΩΩΩ∥0, (12)

where ∥SSSΩΩΩ∥0 is utilized to separate outliers from XXXΩΩΩ,
∥XXXΩΩΩ − (UUUVVV )ΩΩΩ − SSSΩΩΩ∥2F is able to resist the Gaussian
noise, and µ > 0 is the penalty parameter which controls
the sparsity of SSSΩΩΩ. In our algorithms, µ is automatically
updated by a Laplacian kernel based method.

Before proceeding, we analyze the advantage of (12)
over the entry-wise ℓp-norm based methods and Huber loss
based approaches. It is known that the Frobenius norm is
superior to the ℓp-norm under Gaussian noise. For impul-
sive noise, it is generally comprised of normal disturbances
and outliers. In comparison with the Frobenius norm, the
ℓp-norm weakens the impact of outliers, but cannot handle
Gaussian noise as good as the Frobenius norm. In (12), the
ℓ0-norm and Frobenius norm are able to attain optimality
to separate the anomalies and resist the Gaussian noise,
respectively. Therefore, our formulation may attain better
recovery performance than traditional robust models.

It is clear that (12) is an unconstrained and multi-
variable optimization problem with three variables,
namely, UUU , VVV and SSS. Therefore, BCD is adopted as the
solver, leading to the following iterative procedure:

UUUk+1 = argmin
UUU

∥XXXΩΩΩ − (UUUVVV k)ΩΩΩ −SSSk
ΩΩΩ∥2F , (13a)

VVV k+1 = argmin
VVV

∥XXXΩΩΩ − (UUUk+1VVV )ΩΩΩ −SSSk
ΩΩΩ∥2F , (13b)

SSSk+1 = argmin
SSS

∥NNNk+1
ΩΩΩ −SSSΩΩΩ∥2F + µk+1∥SSSΩΩΩ∥0, (13c)

where NNNk+1
ΩΩΩ =XXXΩΩΩ−(UUUk+1VVV k+1)ΩΩΩ. Note that µ is updated

by Algorithm 2 before computation of SSSk+1, hence µk+1

replaces µ. It is seen that the BCD alternately optimizes
one of the variables with fixing the two remaining variables
at each iteration. We first focus on computing UUUk+1 given
VVV k and SSSk. As (13a) can be decoupled with respect to
(w.r.t.) uuuT

i , it is equivalent to the following m independent
subproblems

(uuuT
i )

k+1 = argmin
uuuT

i

∥(uuuT
i VVV

k)ΩΩΩT
i
− (yyyTi )ΩΩΩT

i
∥22, (14)

where (yyyTi )ΩΩΩT
i

and ΩΩΩT
i are the ith row of YYY ΩΩΩ =XXXΩΩΩ −SSSk

ΩΩΩ

and ΩΩΩ, respectively. It is clear that the residual between
(uuuT

i VVV
k)ΩΩΩi

and (yyyTi )ΩΩΩi
is only affected by the observed

entries. Therefore, we remove the unobserved elements,
leading to

(uuuT
i )

k+1 = argmin
uuuT

i

∥uuuT
i AAA− bbbT ∥22, (15)

where bbbT ∈ R∥ΩΩΩT
i ∥1 and AAA ∈ Rr×∥ΩΩΩT

i ∥1 only contain
the observed entries of (yyyTi )ΩΩΩT

i
and the corresponding

columns of VVV k, respectively. To be specific, we provide
an example for determining AAA and bbb. Consider VVV k =
[vvv1, vvv2, vvv3, vvv4, vvv5] ∈ Rr×5 and (yyyTi )ΩΩΩT

i
= [0, y2, 0, y4, 0] ∈

R5 with ΩΩΩT
i = [0, 1, 0, 1, 0]. Then, we get AAA = [vvv2, vvv4] and

bbbT = [y2, y4].
Since (15) is a linear least squares problem, its closed-

form solution is

(uuuT
i )

k+1 = bbbT (AAA)†, (16)

whose computational complexity is O(∥ΩΩΩT
i ∥1r2).

Problem (13b) has the same structure as (13a) and
hence (13b) can be addressed in a similar manner.
Specifically, we decompose (13b) into n independent
subproblems:

vvvk+1
j = argmin

vvvj

∥(UUUk+1vvvj)ΩΩΩj
− (yyyj)ΩΩΩj

∥22, (17)

where (yyyj)ΩΩΩj
and ΩΩΩj are the jth column of YYY ΩΩΩ and ΩΩΩ,

respectively. After removing the missing entries, (17) is
rewritten as

vvvk+1
j = argmin

vvvj

∥CCCvvvj − ddd∥22, (18)

where ddd ∈ R∥ΩΩΩj∥1 and CCC ∈ R∥ΩΩΩj∥1×r only involve the
observed entries of (yyyj)ΩΩΩj

and corresponding rows of UUUk+1,
respectively. Then, the solution to (18) is

vvvk+1
j = CCC†ddd, (19)

with computational complexity of O(∥ΩΩΩj∥1r2).
For (13c), its solution is only determined by the ob-

served entries of NNNk+1
ΩΩΩ . In addition, si,j only depends on

(nk+1)i,j . We then rewrite (13c) in vector form:

sssk+1 = argmin
sss

∥nnnk+1 − sss∥22 + µk+1∥sss∥0, (20)

where sss ∈ R∥ΩΩΩ∥1 and nnnk+1 ∈ R∥ΩΩΩ∥1 . Note that the method
to determine µk+1 is presented in the next subsection.
The process of attaining nnnk+1 from NNNk+1

ΩΩΩ is illustrated as
follows

NNNk+1
ΩΩΩ =

[
0 n12 0 n14

n21 n22 n23 0

]
(21)

and the corresponding ΩΩΩ is ΩΩΩ = [0, 1, 0, 1; 1, 1, 1, 0]. Then,
we get nnnk+1 = [n21, n12, n22, n23, n14]

T .
For (20), its solution is computed as

sssk+1 = Tµk+1(nnnk+1) =

{
(nk+1)i, if |(nk+1)i| ≥

√
µk+1

0, otherwise
,

(22)
where Tµk+1(·) is a hard-thresholding operator that keeps
the values above the threshold, and sets the variables
below the threshold to 0 [46]. After obtaining sssk+1,
we update SSSk+1 based on sssk+1 and ΩΩΩ via the inverse
operation of getting nnnk+1 from NNNk+1

ΩΩΩ . The proposed
method is named ℓ0-BCD whose steps are summarized
in Algorithm 1. Furthermore, its convergence analysis is
provided in Appendix A.
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Algorithm 1 ℓ0-BCD for RMC

Input: XXXΩ, Ω, r and Kmax

Initialize: Randomly initialize VVV 1 ∈ Rr×n, and SSS1 =
000 ∈ Rm×n

for k = 1, 2, · · · , Kmax do
for i = 1, 2, · · · ,m do

Compute (uuuT
i )

k+1 using (15)
end for
for j = 1, 2, · · · , n do

Compute vvvk+1
j using (18)

end for
Construct NNNk+1

ΩΩΩ =XXXΩΩΩ − (UUUk+1VVV k+1)ΩΩΩ
Compute µ̃k+1 with input |nnnk+1| via Algorithm 2
µk+1 = min(µ̃k+1, µk)
sssk+1 = Tµk+1(nnnk+1)
Calculate SSSk+1 based on sssk+1 and ΩΩΩ

end for
Output: MMM = UUUk+1VVV k+1

B. Adaptive Penalty
In traditional penalty methods, the penalty parameter

µ is manually set and fixed during iterations. It is known
that if µ is chosen too large or too small, the results
may be considerably different. Therefore, a dynamical and
adaptive µ may be preferred in real-world applications.

It can be known from (22) that µ in ℓ0-BCD determines
the sparsity of SSSΩΩΩ, that is, the number of outliers. Hence,
the core of estimating µ is how to identify anomalies
accurately from the residual. Laplacian kernel [47] is one
popular method to detect outliers, defined as

kσ(x− y) = exp

(
−|x− y|

σ

)
. (23)

Note that σ is termed as kernel size or bandwidth. It is
determined using the concept of kernel density estimation,
namely, Silverman’s rule [48]. The value of kσ(x − y)
decreases as the value of |x− y| increases. Especially, the
very large value of |x− y| results in kσ(x− y) = 0. Hence,
the Laplacian kernel has outlier detection capability [49].

To estimate µ given an input nnn, we first adopt the
Silverman’s rule to compute the kernel size:

σ = 1.06×min(σE , IQR/1.34)× dim(nnn)−0.2, (24)

where σE and IQR are the standard deviation and
interquartile range of nnn, respectively. After obtaining σ,
we compute www as www = kσ(nnn) where wi ≤ ϵ means that ni

is an outlier. In our method, ϵ is set to 10−20. Based on
www, we get a coordinate set Ψ of anomalies for wi ≤ ϵ and
then µ is calculated as

µ = min(n2
1, n

2
2, · · · , n2

i ) s.t. i ∈ Ψ. (25)

Estimation of µ based on the Laplacian kernel is summa-
rized in Algorithm 2. Give nnn ∈ R∥ΩΩΩ∥1 , the computational
complexity for calculating µ is O(∥ΩΩΩ∥1).

Algorithm 2 Outlier detector based on Laplacian kernel

Input: nnn and ϵ
σ2 = 1.06×min(σE , IQR/1.34)× dim(nnn)−0.2

www = kσ(nnn)
Ψ = {i} based on wi ≤ ϵ
µ = min(n2

1, n
2
2, · · · , n2

i ) s.t. i ∈ Ψ
Output: µ and Ψ

C. Fast Variant
In ℓ0-BCD, we retain the indices of the anomalies in

ΩΩΩ. A novel perspective on solving RMC is that outlier-
contaminated elements are treated as missing entries. In
accordance with this scheme, we divide ΩΩΩ into two binary
matrices such that ΩΩΩ = ΩΩΩg + ΩΩΩo. That is, 1 in ΩΩΩo and
ΩΩΩg denotes an observed entry with and without outlier,
respectively. In other words, ΩΩΩg implies that the observed
entries are noise-free or corrupted by Gaussian noise.
The computational complexities of calculating (uuuT

i )
k+1

and vvvk+1
j are O(∥ΩΩΩT

i ∥1r2) and O(∥ΩΩΩj∥1r2), respectively.
Simply speaking, the computational cost depends on the
number of nonzero entries in ΩΩΩ. If ΩΩΩg replaces ΩΩΩ to handle
MC problem, the computational complexity will reduce
because ∥ΩΩΩg∥1 ≤ ∥ΩΩΩ∥1.

Based on the above-mentioned idea, the iterative pro-
cedure to solve (12) is rewritten as

UUUk+1 = argmin
UUU

∥XXXΩΩΩg,k − (UUUVVV k)ΩΩΩg,k −SSSk
ΩΩΩg,k∥2F , (26a)

VVV k+1 = argmin
VVV

∥XXXΩΩΩg,k − (UUUk+1VVV )ΩΩΩg,k −SSSk
ΩΩΩg,k∥2F , (26b)

SSSk+1 = argmin
SSS

∥NNNk+1
ΩΩΩ −SSSΩΩΩ∥2F + µk+1∥SSSΩΩΩ∥0. (26c)

Note that the observation set in updating UUUk+1 and VVV k+1

becomes ΩΩΩg,k. However, updating SSSk+1 is still based on
ΩΩΩ since one-off anomaly detection may not be accurate.
Computation of SSSk+1 founded on ΩΩΩ is able to release the
mistaken entries to ΩΩΩ. The process of solving (26a), (26b),
and (26c) is similar to that of ℓ0-BCD. Accordingly, UUUk+1,
VVV k+1 and SSSk+1 are determined analogous to the ℓ0-BCD.
The difference is that the fast method requires computing
ΩΩΩg,k before updating UUUk+1.

To determine ΩΩΩg,k, we first compute a binary ΩΩΩo,k ∈
Rm×n based on SSSk:

(ΩΩΩo,k)i,j =

{
1, if (SSSk)i,j ̸= 1,

0, otherwise.
(27)

Then, ΩΩΩg,k = ΩΩΩ−ΩΩΩo,k.
Since SSSk is updated iteratively by ℓ0-BCD, the anomaly

impact on computation of UUUk and VVV k slowly diminishes as
iteration increases. In contrast, this fast variant assumes
that the entries containing outliers are unobserved. In
other words, updating UUUk and VVV k is not affected by
anomalies at the beginning. Compared with the solution
which is affected by outliers, the result without the impact
of outliers has a smaller estimation error at the same
number of iterations. In addition, the fast variant has
lower computational complexity than the ℓ0-BCD and thus
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Algorithm 3 ℓ0-BCD-F for RMC

Input: XXXΩΩΩ, ΩΩΩ, r and Kmax

Initialize: Randomly initialize VVV 1 ∈ Rr×n, and SSS1 =
000 ∈ Rm×n

for k = 1, 2, · · · , Kmax do
Calculate ΩΩΩo,k via (27)
Update ΩΩΩg,k = ΩΩΩ−ΩΩΩo,k

Compute UUUk+1 and VVV k+1 based on ΩΩΩg,k using
Algorithm 1
Compute SSSk+1 based on ΩΩΩ using Algorithm 1

end for
Output: MMM = UUUk+1VVV k+1

it is termed as ℓ0-BCD-F. The steps of the ℓ0-BCD-F are
summarized in Algorithm 3.

Note that (26a)–(26c) cannot be considered to address
the original problem (12) since the solutions of UUU and VVV
are computed based on a subset ofΩΩΩ. Thereby, it is difficult
to prove its convergence. Its convergence is verified using
empirical results in Section V.

D. Computational Complexity Analysis

The computational complexities of calculating (uuuT
i )

k

and vvvkj are O(∥ΩΩΩT
i ∥1r2) and O(∥ΩΩΩj∥1r2), respectively. Be-

sides, calculating µk requires the complexity of O(∥ΩΩΩ∥1).
Since

∑m
i=1 ∥ΩΩΩT

i ∥1 =
∑n

j=1 ∥ΩΩΩj∥1 = ∥ΩΩΩ∥1, ℓ0-BCD has the
computational complexity of O(∥ΩΩΩ∥1r2) for one iteration.

For ℓ0-BCD-F, the outlier-contaminated elements are
considered as missing entries and hence we have ∥ΩΩΩg∥1 <
∥ΩΩΩ∥1. Besides, the ℓ0-BCD-F’s complexity is dominated
by the computations of UUUk and VVV k. Accordingly, its
complexity is O(∥ΩΩΩg∥1r2).

TABLE I: Complexity comparison of different algorithms
Method Computational complexity

ℓ0-BCD-F O(∥ΩΩΩg∥1r2)
ℓ0-BCD O(∥ΩΩΩ∥1r2)
ℓp-reg O(T∥ΩΩΩ∥1r2)

ℓp-ADMM O(T∥ΩΩΩ∥1r2)
M-estimation O(T∥ΩΩΩ∥1r2)

VBMFL1 O((m+ n)r3 +mnr2)

Table I tabulates the computational requirement of six
algorithms where T > 0 is the number of inner iterations
in the ℓp-reg, ℓp-ADMM and M-estimation. For VBMFL1,
mn > ∥ΩΩΩ∥1 holds. It is clear that the proposed methods
have lower computational complexity than the existing
algorithms.

IV. Extension to Nonnegative Matrix Completion

In this section, we extend the ideas in RMC to NRMC,
yielding a basic method and its fast variant.

A. Algorithm Development
By modifying RMC, the RNMC formulation is:

min
UUU≥0,VVV≥0,SSS

∥XXXΩΩΩ − (UUUVVV )ΩΩΩ −SSSΩΩΩ∥2F + µ∥SSSΩΩΩ∥0, (28)

where SSS is not constrained to be positive. Although (28) is
a constrained and multi-variable problem, the constraints
can be affiliated with each block. Thereby, BCD can also
be adopted as the solver, leading to

UUUk+1 = argmin
UUU≥0

∥XXXΩΩΩ − (UUUVVV k)ΩΩΩ −SSSk
ΩΩΩ∥2F , (29a)

VVV k+1 = argmin
VVV≥0

∥XXXΩΩΩ − (UUUk+1VVV )ΩΩΩ −SSSk
ΩΩΩ∥2F , (29b)

SSSk+1 = argmin
SSS

∥NNNk+1
ΩΩΩ −SSSΩΩΩ∥2F + µk+1∥SSSΩΩΩ∥0. (29c)

It is worth mentioning that (13c) and (29c) are the same.
To handle (29a) and (29b), the MM algorithm is exploited.
We briefly introduce MM for completeness.

B. Majorization-Minimization
Consider a general optimization problem

min
x

h(x) s.t. x ∈ X , (30)

where h : X → R is a continuous function and X is a
nonempty closed set. MM [50], [51] employs a surrogate
function g(x|xt) of h(x) to solve the original problem
iteratively. Note that g(x|xt) should satisfy the following
properties:

(i) h(xt) = g(xt|xt).
(ii) h(x) ≤ g(x|xt), s.t. x ∈ X .
(iii) ∇h(xt) = ∇g(xt|xt).
Then, x is iteratively updated as

xt+1 = argmin
x

g(x|xt). (31)

We see that MM uses g(x|xt) to approximate the original
function at xt and then searches for the solution to g(x|xt).
In addition, the convergence of MM has been proved [51].

C. ℓ0-BCD-MM
We first focus on tackling (29a). From ℓ0-BCD, it is

known that (29a) can be decomposed into m independent
subproblems

(uuuT
i )

k+1=arg min
uuuT

i ≥0
∥uuuT

i AAA− bbbT ∥22=arg min
uuui≥0

∥AAATuuui − bbb∥22

=arg min
uuui≥0

uuuT
i AAAAAA

Tuuui−2(AAAbbb)Tuuui+bbbTbbb

= arg min
uuui≥0

uuuT
i LLLuuui − 2(AAAbbb)Tuuui, (32)

where bbbTbbb is dropped since it is a constant w.r.t. uuui, and
LLL = AAAAAAT ∈ Rr×r. In order to derive a closed-form update
to solve (32), we introduce a surrogate function to majorize
the quadratic term of uuuT

i LLLuuui.
Lemma 1 [52]: Let LLL ∈ Rr×r and QQQ ∈ Rr×r be real

symmetric matrices such that QQQ ⪰ LLL. Then, for any vector
uuu ∈ Rr, the quadratic function uuuTLLLuuu is majorized at uuut

by uuuTQQQuuu+ 2uuuT (LLL−QQQ)uuut + (uuut)T (QQQ−LLL)uuut.
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Based on Lemma 1, the surrogate function of uuuT
i LLLuuui is

formulated as

uuuT
i QQQuuui + 2uuuT

i (LLL−QQQ)uuut
i + (uuut

i)
T (QQQ−LLL)uuut

i. (33)

To meet QQQ ⪰ LLL, we set QQQ = λmaxIII where λmax is the
largest eigenvalue of LLL. Then, we have

uuuT
i LLLuuui≤uuuT

i QQQuuui+2uuuT
i (LLL−QQQ)uuut

i + (uuut
i)

T (QQQ−LLL)uuut
i

=λmaxuuu
T
i uuui+2uuuT

i (LLL− λmaxIII)uuu
t
i+(uuut

i)
T (QQQ−LLL)uuut

i

=λmaxuuu
T
i uuui+2

(
(LLL−λmaxIII)uuu

t
i

)T
uuui+(uuut

i)
T (QQQ−LLL)uuut

i, (34)

where the superscript t of uuut
i is the iteration number of

the MM method. Hence, the surrogate function g(uuui|uuut
i)

of uuuT
i LLLuuui − 2(AAAbbb)Tuuui in (32) becomes

g(uuui|uuut
i) =λmaxuuu

T
i uuui+2

(
(LLL−λmaxIII)uuu

t
i−AAAbbb

)T
uuui

+ (uuut
i)

T (QQQ−LLL)uuut
i. (35)

Then, according to MM, we iteratively update g(uuu|uuut) to
solve (32) by

uuut+1
i = arg min

uuui≥0
g(uuui|uuut

i)

= arg min
uuui≥0

uuuT
i uuui + (qqqt)Tuuui, (36)

where the term (uuut
i)

T (QQQ − LLL)uuut
i is dropped as it is a

constant w.r.t. uuui, and (qqqt)T = 2
λmax

((LLL−λmaxIII)uuu
t
i−AAAbbb)

T .
The closed-form solution to (36) is

uuut+1
i = I(qqqt) =

{
− qti

2 , if qti < 0,

0, otherwise.
(37)

The proof of the closed-form solution is provided in
Appendix B. When uuut+1

i converges, it becomes the optimal
solution to (32).

For (29b), it can be handled in a similar way, leading
to the following n independent subproblems:

vvvk+1
j = arg min

vvvj≥0
∥CCCvvvj − ddd∥22

= arg min
vvvj≥0

vvvTj CCC
TCCCvvvj − 2(CCCTddd)Tvvvj + dddTddd

= arg min
vvvj≥0

vvvTj LLLvvvj − 2(CCCTddd)Tvvvj , (38)

where LLL = CCCTCCC. It is clear that (38) is equivalent to (32).
Thus, vvvk+1

j can be sought via the same way

vvvt+1
j = arg min

vvvj≥0
vvvTj vvvj + (qqqt)Tvvvj , (39)

where (qqqt)T = 2
λmax

((LLL − λmaxIII)vvv
t
j −CCCTddd)T . When vvvt+1

j

converges, vvvk+1
j is determined, that is, vvvk+1

j = vvvt+1
j .

Finally, (29c) is the same as (13c) in the ℓ0-BCD and
hence SSSk+1 can be computed as in Algorithm 1.

Algorithm 4 summarizes the steps of ℓ0-BCD-MM. Note
that there are three layers of iterative updates. The outer
updates on UUUk+1, VVV k+1, and SSSk+1 correspond to the BCD
method. The middle layer calculates uuuk+1

i and vvvk+1
j of

UUUk+1 and VVV k+1, respectively. The inner refers to the
iteration of the MM algorithm. Parallel and distributed
computing can be used to calculate uuuk+1

i and vvvk+1
j and

thus the computational efficiency can be greatly increased.

Algorithm 4 ℓ0-BCD-MM for RNMC

Input: XXXΩΩΩ, ΩΩΩ, r and Kmax

Initialize: Randomly initialize VVV 1 ∈ Rr×n, and SSS1 =
000 ∈ Rm×n

for k = 1, 2, · · · , Kmax do
for i = 1, 2, · · · ,m do

Randomly initialize uuu0
i ∈ Rr

Compute λmax based on LLL = AAAAAAT

for t = 1, 2, · · · do
qqqt = 2

λmax
((LLL− λmaxIII)uuu

t
i −AAAbbb)

uuut+1
i = I(qqqt)

Stop if stopping criterion is met.
end for
uuuk+1
i = uuut+1

i

end for
for j = 1, 2, · · · , n do

Randomly initialize vvv0j ∈ Rr

Compute λmax based on LLL = CCCTCCC
for t = 1, 2, · · · do

qqqt = 2
λmax

((LLL− λmaxIII)vvv
t
j −CCCTddd)

vvvt+1
j = I(qqqt)

Stop if stopping criterion is met.
end for
vvvk+1
j = vvvt+1

j

end for
Construct NNNk+1

ΩΩΩ =XXXΩΩΩ − (UUUk+1VVV k+1)ΩΩΩ
Compute µ̃k+1 with input |nnnk+1| via Algorithm 2
Update µk+1 = min(µ̃k+1, µ

k)
Compute sssk+1 = Tµk+1(nnnk+1)
Update SSSk+1 based on sssk+1 and ΩΩΩ

end for
Output: MMM = UUUk+1VVV k+1

Moreover, the termination condition for uuut+1 is suggested
as ∥uuut+1 − uuut∥22/dim(uuu) < 10−5 which means that the
average power difference between adjacent iterations of
each entry is less than 10−5. Similarly, vvvt+1 also adopts
this stopping criterion.

Regarding its objective value convergence, the proof
of ℓ0-BCD is applicable. Since the convergence of MM
algorithm is ensured [51], uuuk+1

i and vvvk+1
j are the op-

timal solutions to the convex problems (32) and (38),
respectively. That is, the updates of UUUk+1 and VVV k+1 by
Algorithm 4 keep the objective value nonincreasing. Thus,
in accordance to the convergence analysis of the ℓ0-BCD,
the ℓ0-BCD-MM’s convergence is guaranteed.

D. Fast Variant

The strategy in ℓ0-BCD-F can be used to speed up
the ℓ0-BCD-MM. When we treat the outlier-contaminated
elements as unobserved entries, the ℓ0-BCD-MM evolves
into ℓ0-BCD-MM-F. The steps of the ℓ0-BCD-MM-F are
summarized in Algorithm 5.
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Algorithm 5 ℓ0-BCD-MM-F for RNMC

Input: XXXΩΩΩ, ΩΩΩ, r and Kmax

Initialize: Randomly initialize VVV 1 ∈ Rr×n, and SSS1 =
000 ∈ Rm×n.
for k = 1, 2, · · · , Kmax do

Calculate ΩΩΩo,k via (27)
Update ΩΩΩg,k = ΩΩΩ−ΩΩΩo,k

Compute UUUk+1 and VVV k+1 based on ΩΩΩg,k using
Algorithm 4
Compute SSSk+1 based on ΩΩΩ using Algorithm 4

end for
Output: MMM = UUUk+1VVV k+1

E. Computational Complexity Analysis
To facilitate presentation, we assume that ∥ΩΩΩT

i ∥1 >
∥ΩΩΩj∥1. For ℓ0-BCD-MM, the computational complexity
for LLL is O(r2∥ΩΩΩT

i ∥1). To compute λmax, the complexity is
O(r3). The MM computational complexity is O(rT∥ΩΩΩT

i ∥1)
where T is the required iteration number. Thus, the total
computational complexity is O(rT∥ΩΩΩ∥1) because T ≫ r
and

∑m
i=1 ∥ΩΩΩT

i ∥1 = ∥ΩΩΩ∥1. On the other hand, the compu-
tational complexity of ℓ0-BCD-MM-F is O(rT∥ΩΩΩg∥1).

V. Simulation Results
In this section, the proposed methods are evaluated

using synthetic and real-world data. In detail, subsections
I and II examine our RMC algorithms, while the remaining
two subsections test the suggested NRMC approaches.

A. Synthetic data
The noise-free and complete matrix XXX ∈ R400×500 with

r = 10 is generated by the product of XXX1 ∈ R400×10 and
XXX2 ∈ R10×500 whose entries obey the standard Gaussian
distribution. Then, the incomplete matrix without noise
X̃XXΩΩΩ consists of randomly selected 50% entries from XXX.
In other words, 50% entries of ΩΩΩ are equal to 1, and
the rest are 0. Moreover, X̃XXΩΩΩ is added with independent
impulsive noise which is modeled by Gaussian mixture
model (GMM). The probability density function (PDF)
of GMM is given by

pv(v)=
c1√
2πσ1

exp

(
− v2

2σ2
1

)
+

c2√
2πσ2

exp

(
− v2

2σ2
2

)
,

(40)

where c1+c2 = 1 with 0 < ci < 1, σ2
1 and σ2

2 are variances.
To simulate the impulsive noise, it requires σ2

2 ≫ σ2
1 and

c2 < c1. It means that sparse and high power noise samples
with σ2

2 and c2 are mixed in Gaussian background noise
with small variance σ2

1 . In our simulations, we set σ2
2 =

100σ2
1 and c2 = 0.1. The signal-to-noise ratio (SNR) is

defined as

SNR =
∥X̃XXΩΩΩ∥2F
∥ΩΩΩ∥1σ2

v

, (41)

where σ2
v =

∑2
i=1 ciσ

2
i is the total noise variance.

The recovery performance is measured by mean square
error (MSE), defined as

MSE =
∥MMM −XXX∥2F

mn
, (42)

where MMM is the recovered matrix.
1) Convergence Behavior: We first present the con-

vergence behaviors of the ℓ0-BCD and ℓ0-BCD-F. Fig.
(S.1) in the supplementary material plots the objective
value convergence where “Loss” denotes the value of
Lµk(UUUk,VVV k,SSSk) = ∥XXXΩΩΩ− (UUUkVVV k)ΩΩΩ−SSSk

ΩΩΩ∥2F +µk∥SSSk
ΩΩΩ∥0. It

is seen that the objective value of the proposed algorithms
is nonincreasing, and converges within 10 iterations.

Besides, Figs. (S.2) and (S.3) show the sequence con-
vergence of the ℓ0-BCD and ℓ0-BCD-F, respectively. Since
there are numerous entries of UUUk, VVV k, and SSSk, we only
plot partial entries, that is, ui,i, vi,i and si,i. As the rank
is 10, there are ten curves for UUUk and VVV k. Besides, the
number of curves for SSSk is much less than 400 because of
its sparsity. It is observed that the sequence {UUUk,VVV k,SSSk}
is able to converge within 10 iterations.

Moreover, we investigate the impact of initialization,
namely, VVV , in 50% randomly missing data and 3dB GMM
noise. Fig. (S.4) plots 100 convergence curves for each
algorithm where VVV are randomly initialized. Specifically,
the average steady-state MSEs of the ℓ0-BCD-F and ℓ0-
BCD are 5.4582 × 10−2 and 5.4592 × 10−2, respectively.
Hence, their performance seems insensitive to the param-
eter initialization.

2) Performance Comparison: We compare the ℓ0-BCD-
F and ℓ0-BCD with popular methods, including ℓp-
reg [25], ℓp-ADMM [25], M-estimation [27], VBMFL1 [31],
and ORMC [22]. Fig. 1 depicts the MSE convergence
performance of different methods under 50% randomly
missing data and additive GMM noise of SNR = 3dB. It
is observed that the ℓ0-BCD-F and ℓ0-BCD have a similar
steady-state MSE which is lower than that of the compet-
ing algorithms. Hence, the proposed methods have supe-
rior recovery performance over the existing approaches. As
the ORMC is designed for the situation that the observed
matrix has a few Gaussian noise-contaminated columns,
it cannot achieve satisfactory performance in impulsive
noise.

The runtimes are tabulated in Table II where the
stopping condition is MSE < 0.1. Since the ORMC cannot
attain this criterion, its result is not presented. We see that
the elapsed time of our algorithms is much less than that
of the competitors. In addition, the ℓ0-BCD-F is faster
than ℓ0-BCD.

TABLE II: Elapsed time of different methods.
Method ℓ0-BCD-F ℓ0-BCD ℓp-reg ℓp-ADMM M-estimation VBMFL1
Time (s) 0.12 0.26 25.99 9.33 2.01 1.02

The impact of the percentage of missing data with 3dB
GMM noise is plotted in Fig. 2. We see that the MSEs of
ℓ0-BCD-F and ℓ0-BCD are the smallest among the seven
algorithms for all percentages. Thus, our methods achieve
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Fig. 1: MSE versus iteration number with 50% randomly
missing data and SNR=3dB GMM noise.

superior recovery performance over the ℓp-reg, ℓp-ADMM,
M-estimation, VBMFL1, and ORMC. It is worth noting
that the ℓ0-BCD-F has comparable performance to ℓ0-
BCD, indicating that the scheme of discarding the outlier-
contaminated entries is feasible.

Fig. 2: MSE versus percentage of randomly missing data
by different methods under 3dB GMM noise.

The performance under different SNRs is investigated in
Fig. 3. As the MSEs of the ORMC are too large such that
it is difficult to differentiate the remaining algorithms, its
results are not included. We clarify that, under 9dB GMM
noise, the MSEs of the ℓ0-BCD-F, ℓ0-BCD, ℓp-reg, ℓp-
ADMM, M-estimation and VBMFL1 are 0.01427, 0.01434,
0.01996, 0.02074, 0.01791, and 0.01737, respectively. It is
seen that our developed methods outperform the compet-
ing algorithms at different levels of the impulsive noise.

B. Image Inpainting
A popular application of MC is gray-scale image inpaint-

ing [26]. Images, in practice, may not be fully captured due
to damage to the photosensitive device or the shadow from
other objects. In addition, the image data may be mixed
with impulsive noise during wireless transmission or bit
errors in the signal acquisition stage. Although the impulse

Fig. 3: MSE versus SNR by different algorithms with 50%
randomly missing data.

amplitude may be very large, they are set to the largest
or smallest admissible values after quantization, giving
the image a “salt and pepper” like appearance. For 8-bit
images, the maximum and minimum values are 0 (black)
and 255 (white), respectively. The salt-and-pepper noise
has a noise density coefficient, denoted as τ . Note that the
relationship between τ and SNR is τ = 1/SNR [25]. For a
given value of τ , approximately 0.5τ of the pixels become
255 or 0. Fig. 4 shows the noiseless and noisy pictures at
τ = 0.2.

Original Corrupted

Fig. 4: Illustration of original image and noisy image
corrupted by salt-and-pepper noise with SNR = 5dB.

It is worth mentioning that the PDF of the salt-and-
pepper noise does not comply with GMM and hence
the proposed algorithms cannot be directly adopted to
resist the salt-and-pepper noise. Since the pixels which
are corrupted by salt-and-pepper noise are either 255 or
0, it is easy to detect the location of outliers. In general,
dispersed black and white pixels are not the integers of
0 and 255, respectively, but have values close to 0 and
255. If there exists an area of white or black, it is not
difficult to differentiate it and the salt-and-pepper noise.
This is because that the noise is discrete, while the area
is continuous. Therefore, we directly utilize 255 and 0 to
identify the salt and pepper pixels, which is also adopted
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Observation

PSNR = 27.9645

SSIM = 0.83924

PSNR = 27.969

SSIM = 0.83941

PSNR = 27.1106

SSIM = 0.81864

PSNR = 25.6974

SSIM = 0.75757

PSNR = 27.0976

SSIM = 0.81917

PSNR = 25.4715

SSIM = 0.79349

PSNR = 18.0404

SSIM = 0.30349

PSNR = 28.2571

SSIM = 0.85383

PSNR = 28.2533

SSIM = 0.85292

PSNR = 27.5763

SSIM = 0.84514

PSNR = 27.2974

SSIM = 0.83397

PSNR = 27.5654

SSIM = 0.84537

PSNR = 27.4584

SSIM = 0.84476

PSNR = 17.7155

SSIM = 0.44097

Fig. 5: Performance of different approaches in two types of masks with 5dB salt-and-pepper noise. The left column
shows observed pictures with different masks, while the recovered images are shown from the second column to the
end.

TABLE III: PSNR and SSIM versus percentage of randomly observed data with 5dB salt-and-pepper noise by different
methods.

Percentage Metric ℓ0-BCD ℓ0-BCD-F ℓp-reg ℓp-ADMM M-estimation VBMFL1 ORMC

0.2 PSNR 23.0734 24.2082 15.8689 13.8750 16.2060 22.6711 13.5667
SSIM 0.6704 0.7096 0.3017 0.2402 0.3082 0.6673 0.1277

0.3 PSNR 26.9514 26.9993 20.3070 17.7409 20.1598 23.8800 15.2891
SSIM 0.8025 0.8046 0.5684 0.4853 0.5683 0.7296 0.1955

0.4 PSNR 27.6047 27.6657 25.6055 19.4561 25.5207 24.6114 17.0142
SSIM 0.8263 0.8276 0.7690 0.6312 0.7711 0.7586 0.2731

0.5 PSNR 27.9645 27.9690 27.1106 25.6974 27.0976 25.4715 18.0404
SSIM 0.8392 0.8394 0.8186 0.7576 0.8192 0.7935 0.3035

0.6 PSNR 28.1555 28.1714 27.4636 26.7988 27.3794 25.5083 19.0859
SSIM 0.8448 0.8459 0.8272 0.8103 0.8272 0.7958 0.3761

0.7 PSNR 28.2917 28.2884 27.4390 27.3343 27.6063 27.4049 19.7565
SSIM 0.8503 0.8497 0.8335 0.8234 0.8392 0.8382 3.9845

0.8 PSNR 28.3515 28.3514 27.6399 27.2980 27.8382 27.5732 20.0245
SSIM 0.8530 0.8524 0.8442 0.8311 0.8423 0.8440 0.4345

0.9 PSNR 28.4173 28.4182 27.7497 27.3501 27.7473 27.6420 20.7896
SSIM 0.8547 0.8546 0.8474 0.8342 0.8477 0.8462 0.4675

by [53]. Based on the above strategy, (13a)–(13c) are
simplified as

UUUk+1 = argmin
UUU

∥XXXΩΩΩ − (UUUVVV k)ΩΩΩ −SSSk
ΩΩΩ∥2F , (43a)

VVV k+1 = argmin
VVV

∥XXXΩΩΩ − (UUUk+1VVV )ΩΩΩ −SSSk
ΩΩΩ∥2F , (43b)

SSSk+1 =XXXΩΩΩo − (UUUk+1VVV k+1)ΩΩΩo , (43c)
where ΩΩΩo ∈ Rm×n is the subset of ΩΩΩ, and contains
the indices of outliers. Similarly, (26a)–(26c) can be re-
expressed as

UUUk+1 = argmin
UUU

∥(UUUVVV k)ΩΩΩ−ΩΩΩo −XXXΩΩΩ−ΩΩΩo∥2F , (44a)

VVV k+1 = argmin
VVV

∥(UUUk+1VVV )ΩΩΩ−ΩΩΩo −XXXΩΩΩ−ΩΩΩo∥2F . (44b)

It is seen that RMC is converted into a tractable problem
with the salt-and-pepper noise.

One image, called windows, is first used to compare the
proposed algorithms with existing approaches, including
ℓp-reg, ℓp-ADMM, M-estimation, VBMFL1 and ORMC.

All algorithms use the same rank of 10. Fig. 4 shows
the original image and the noisy image with salt-and-
pepper noise. The recovery performance is measured by
two metrics, namely, peak SNR (PSNR) and structural
similarity (SSIM). They can be computed by the built-
in MATLAB commands, i.e., ‘psnr(recovered, original)’
and ‘ssim(recovered, original)’. Larger values of PSNR and
SSIM mean that the recovery performance is better.

Fig. 5 depicts the observed pictures and recovered
images by seven methods where two types of masks,
namely, random and fixed masks are investigated. The
random mask implies that the image has 50% randomly
distributed missing entries, while the fixed mask contains
the distorted text of “matrix completion”. It is observed
that the PSNRs and SSIMs of ℓ0-BCD and ℓ0-BCD-F are
larger than those of the competing algorithms. Hence, the
devised methods outperform the existing approaches in
these two missing pattern types.

Moreover, the impact of the percentage of randomly
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TABLE IV: PSNR and SSIM of different algorithms on eight images with two types of masks and 5dB salt-and-pepper
noise.

Image Mask Metric ℓ0-BCD ℓ0-BCD-F ℓp-reg ℓp-ADMM M-estimation VBMFL1 ORMC

Image-1
random PSNR 29.7972 29.7951 25.9674 21.6455 26.3926 27.4465 19.3620

SSIM 0.8652 0.8662 0.7878 0.6129 0.8026 0.8173 0.3426

fixed PSNR 30.1949 30.1836 29.5219 28.7051 29.3843 28.9289 19.8721
SSIM 0.8785 0.8783 0.8697 0.8528 0.8703 0.8579 0.4654

Image-2
random PSNR 29.2469 29.2203 27.6974 25.3052 27.7281 24.2193 19.2240

SSIM 0.8354 0.8361 0.8191 0.7161 0.8278 0.8060 0.2020

fixed PSNR 27.8409 26.3372 25.7804 24.8006 27.8379 25.7197 18.4366
SSIM 0.8873 0.8880 0.8768 0.7798 0.8871 0.8542 0.3291

Image-3
random PSNR 22.3954 22.4208 21.3991 20.7240 21.2911 21.3308 17.2389

SSIM 0.5354 0.5304 0.5115 0.4491 0.5087 0.5115 0.1866

fixed PSNR 21.1611 19.9556 20.117 17.223 20.575 20.2249 17.3795
SSIM 0.6585 0.6588 0.6309 0.5543 0.6355 0.6086 0.2019

Image-4
random PSNR 31.1593 31.8156 27.4336 22.2496 28.7826 28.0039 19.5554

SSIM 0.8304 0.8409 0.7636 0.6178 0.7748 0.7579 0.1788

fixed PSNR 30.8210 31.4570 30.0173 28.3492 30.7888 30.2283 19.6228
SSIM 0.8820 0.8847 0.8601 0.7533 0.8659 0.8279 0.2966

Image-5
random PSNR 24.8283 24.8349 23.6927 23.4951 23.5805 23.8226 18.2287

SSIM 0.6753 0.6756 0.6717 0.6442 0.6665 0.6604 0.2174

fixed PSNR 25.5551 24.6314 22.7487 21.0082 23.4980 24.5877 17.6406
SSIM 0.8264 0.8280 0.7619 0.7287 0.7739 0.7784 0.3077

Image-6
random PSNR 24.4083 24.4225 23.2758 22.5301 23.1543 23.2736 18.2118

SSIM 0.6581 0.6540 0.6451 0.5493 0.6539 0.6515 0.2019

fixed PSNR 22.7007 22.3292 19.1339 19.3220 20.5518 22.3266 17.8605
SSIM 0.7282 0.7286 0.7104 0.6939 0.7192 0.7269 0.3081

Image-7
random PSNR 25.8709 25.8744 24.6104 23.9876 24.5643 23.5304 18.1187

SSIM 0.8902 0.8912 0.8764 0.8574 0.8756 0.8640 0.5959

fixed PSNR 25.1458 25.3920 24.2575 23.8491 23.9278 24.8200 18.2791
SSIM 0.8937 0.8976 0.8902 0.8865 0.8896 0.8963 0.6706

Image-8
random PSNR 22.8408 22.8355 21.6169 20.5329 21.4327 20.8915 17.0360

SSIM 0.5840 0.5837 0.5813 0.4894 0.5795 0.5832 0.1966

fixed PSNR 21.5860 21.6376 20.8151 19.4291 19.8861 21.5761 17.5104
SSIM 0.6261 0.6283 0.6243 0.6198 0.6164 0.6263 0.2028

Image-1 Image-2 Image-3 Image-4

Image-5 Image-6 Image-7 Image-8

Fig. 6: Original images for image inpainting.

missing data on recovery performance is tabulated in
Table III under 5dB salt-and-pepper noise. We see that
the PSNRs and SSIMs of the proposed methods are higher
than those of ℓp-reg, ℓp-ADMM, M-estimation, VBMFL1
and ORMC in different ratios.

Furthermore, eight well-known images, depicted in
Fig. 6, are selected to evaluate the inpainting performance.
Each picture is evaluated with the random and fixed masks
under the previous settings. The comparison results are

tabulated in Table IV. It is seen that, in most cases, the
ℓ0-BCD and ℓ0-BCD-F show remarkable superiority over
their competitors. In a few cases, the metric values of the
suggested algorithms are slightly smaller than those of
the existing methods, such as the PSNR of the ℓ0-BCD-F
in Image-3, as well as SSIM of ℓ0-BCD in Image-7 and
Image-8 in the text mask scenarios.

C. Nonnegative Synthetic data

In this subsection, ℓ0-BCD-MM and ℓ0-BCD-MM-F
are examined using synthetic data. A noise-free matrix
XXX ∈ R400×500 of r = 10 is generated by the product
of |XXX1| ∈ R400×10 and |XXX2| ∈ R10×500 where entries of
XXX1 and XXX2 satisfy the standard Gaussian distribution.
We randomly select 50% entries of XXX as the incomplete
observations and then add GMM noise of SNR = 6dB. Two
methods, namely, MF-ADMM [38] and LRA-ADMM [39],
are compared with our approaches.

Fig. 7 illustrates the MSE convergence performance. It
is observed that the recovery errors of the two proposed
methods are lower than those of the competing algorithms.
This is because the MF-ADMM and LRA-ADMM do not
take impulsive noise into account in their formulation.
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Fig. 8: Original images of Salinas and Indian pines scenes,
and corresponding incomplete images with 30% randomly
missing data and 6dB GMM noise.

D. Hyperspectral Imaging
There are two approaches to solve hyperspectral imag-

ing, namely, matrix-based and tensor-based methods.
Comparison of these two strategies is studied in [54].
The results show that matrix-based methods outperform
tensor-based approaches when the spectral bands are
sufficient. This is because restoring unobserved entries are
difficult at a certain frequency based on the same location
in other frequencies when spectral bands are limited.

In this subsection, we apply the proposed matrix-based
algorithms to restore hyperspectral data. Two open-source
datasets are utilized, i.e., Indian pines and Salinas scene1

whose dimensions are 145×145×200 and 200×200×200,
respectively. The dimensions of 145 × 145 × 200 imply
that the hyperspectral dataset has 200 spectral bands or
slices, and each slice has the dimensions of 145×145. Prior
to handling hyperspectral image inpainting, it requires
reshaping each slice into a vector and then combining all
vectors into a matrix. Furthermore, the incomplete matrix
and observed matrix with GMM noise can be generated.

Two slices of each dataset are selected to evaluate the
recovery performance, including the 90th and 175th slices.
Fig. 8 shows the original images of Salinas and Indian pines
scenes as well as the corresponding observed images with

1URL: http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sen
sing_Scenes

PSNR = 42.4803
SSIM = 0.95337

PSNR = 46.8558
SSIM = 0.97896

PSNR = 42.6195
SSIM = 0.96039

PSNR = 47.0286
SSIM = 0.97922

PSNR = 30.8055
SSIM = 0.92458

PSNR = 38.0851
SSIM = 0.9135

PSNR = 35.0283
SSIM = 0.93177

PSNR = 34.5162
SSIM = 0.83941

Fig. 9: Recovered images by ℓ0-BCD-MM-F, ℓ0-BCD-MM,
LRA-ADMM and MF-ADMM using Salinas dataset.

PSNR = 42.4057
SSIM = 0.95337

PSNR = 52.3908
SSIM = 0.99453

PSNR = 42.364
SSIM = 0.95431

PSNR = 52.706
SSIM = 0.99487

PSNR = 32.2124
SSIM = 0.92198

PSNR = 39.9415
SSIM = 0.93932

PSNR = 36.8373
SSIM = 0.93094

PSNR = 33.8302
SSIM = 0.83476

Fig. 10: Recovered images by ℓ0-BCD-MM-F, ℓ0-BCD-
MM, LRA-ADMM and MF-ADMM using Indian pines
dataset.

30% randomly missing data and 6dB GMM noise. The
visual presentation of Salinas is shown in Fig. 9. Moreover,
the results of the Indian pines are depicted in Fig. 10. It is
seen that the PSNRs and SSIMs of the proposed methods
are much higher than those of MF-ADMM and LRF-
ADMM. Therefore, our algorithms attain better recovery
performance than the existing approaches.

VI. Conclusion
In this paper, we exploit the entry-wise ℓ0-norm and

matrix factorization for RMC. The principle is that
outliers are separated from the observed matrix by a ℓ0-
norm regularization term. Besides, the penalty parameter
of the ℓ0-norm is automatically updated during the itera-
tive procedure. The resultant multi-variable optimization
problem is solved by BCD, yielding two algorithms,
namely, ℓ0-BCD and ℓ0-BCD-F. In the ℓ0-BCD, anomalies
are discerned and separated from the observed matrix,
while the ℓ0-BCD-F treats the outlier-contaminated data
as unobserved entries. Our RMC approach is extended
to solve RNMC where the nonnegativity constraint is
handled by MM. Then, ℓ0-BCD-MM and ℓ0-BCD-MM-F
are proposed for RNMC. Simulation results on synthetic
and real-world data demonstrate the superiority of our
algorithms over the state-of-the-art methods in terms of
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recovery accuracy and computational efficiency. Although
the convergence of the objective value {L(UUUk,VVV k,SSSk)}
has been proved, we will establish sequence convergence
of BCD for the nonconvex and noncontinuous objective
function in the future work.

Appendix A
Convergence Analysis of Algorithm 1

Before the analysis of the objective value convergence of
Algorithm 1, we define a loss function Lµk(UUUk,VVV k,SSSk) =
∥XXXΩΩΩ − (UUUkVVV k)ΩΩΩ − SSSk

ΩΩΩ∥2F + µk∥SSSk
ΩΩΩ∥0. It is clear that

Lµk(UUUk,VVV k,SSSk) is lower bounded by zero. To prove the
objective value convergence, we need to show that the
update of each variable by Algorithm 1 keeps its value
nonincreasing.

Lµk+1(UUUk+1,VVV k+1,SSSk+1)− Lµk(UUUk,VVV k,SSSk)

=Lµk(UUUk+1,VVV k,SSSk)−Lµk(UUUk,VVV k,SSSk)

+Lµk(UUUk+1,VVV k+1,SSSk)−Lµk(UUUk+1,VVV k,SSSk)

+Lµk+1(UUUk+1,VVV k+1,SSSk)−Lµk(UUUk+1,VVV k+1,SSSk)

+Lµk+1(UUUk+1,VVV k+1,SSSk+1)−Lµk+1(UUUk+1,VVV k+1,SSSk). (45)

Since UUUk+1 is determined by (15), it minimizes
Lµk(UUU,VVV k,SSSk), resulting in Lµk(UUUk+1,VVV k,SSSk) −
Lµk(UUUk,VVV k,SSSk) ≤ 0. In addition, VVV k+1 and SSSk+1 are
the optimal solutions to minVVV Lµk(UUUk+1,VVV ,SSSk) and
minSSS Lµk+1(UUUk+1,VVV k+1,SSS), respectively. Therefore,
Lµk(UUUk+1,VVV k+1,SSSk) − Lµk(UUUk+1,VVV k,SSSk) ≤ 0 and
Lµk+1(UUUk+1,VVV k+1,SSSk+1) − Lµk+1(UUUk+1,VVV k+1,SSSk) ≤ 0
hold. For update of µk, it is nonincreasing as
described in Algorithm 1 and hence it makes
Lµk+1(UUUk+1,VVV k+1,SSSk) − Lµk(UUUk+1,VVV k+1,SSSk) ≤ 0
Thereby, Lµk+1(UUUk+1,VVV k+1,SSSk+1)−Lµk(UUUk,VVV k,SSSk) ≤ 0
holds, implying that {Lµk(UUUk,VVV k,SSSk)} is nonincreasing.
Furthermore, the objective function is upper bounded by
Lµ0(UUU0,VVV 0,SSS0), and lower bounded by 0. As a result,
{Lµk(UUUk,VVV k,SSSk)} generated by ℓ0-BCD is convergent. ■

Appendix B
Proof of Closed-Form Solution to Problem (36)

Since (36) is a quadratic programming problem with
convex constraint, the KKT conditions are sufficient and
necessary for its optimal solution. Thereby, we derive
the solution using the KKT conditions. For the sake of
presentation simplicity, we omit the superscripts of uuu and
qqq. Then, the Lagrangian of (36) is

γ(uuu,ννν) = uuuTuuu+ qqqTuuu− νννTuuu, (46)

where ννν contains the Lagrange multipliers. The derivative
of γ(uuu,ννν) w.r.t. uuu is 2uuu+ qqq − ννν. Thus, the solution is

ui =
1

2
(νi − qi). (47)

Based on the KKT conditions, we discuss three cases:
(i) qi > 0: It must hold that νi ≥ qi > 0 due to the

primal feasibility: ui ≥ 0. Hence, νi > 0 and then
necessarily ui = 0 according to the complementary
slackness condition.

(ii) qi < 0: From the dual feasibility condition, we get
νi ≥ 0, which results in ui > 0. Moreover, the com-
plementary slackness condition requires uiνi = 0.
Thus, we have νi = 0 and thereby ui = −qi/2.

(iii) qi = 0: According to the complementary slackness
condition, we conclude ui = νi = 0.

The compact expression of the solution is thus:

uuui =

{
− qi

2 , if qi < 0

0, otherwise.
(48)

■
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