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Low-Rank Tensor Completion Approach Using
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Abstract— Low-rank tensor completion (LRTC) that aims to
restore the latent clean data from an incomplete and/or degraded
observation, shows promising results in ubiquitous tensorial
data completion applications. Most tensor completion approaches
are vulnerable to outliers since their derivations are based on
�2-space to be robust against Gaussian noise. In this work,
to tackle this issue, � p-regression (0 < p < 2) is employed to
achieve outlier resistance, where a factored form of tensor train
(TT)-format representation is regularized by the low-TT-rank
prior to exploit the inter-fibers correlation. On the basis of
that, an effective iterative � p-regression TT completion method
(referred to � p-TTC) is proposed, with the advantage of not
requiring the hard-to-determine user-defined weights in TT rank
model. Extensive experiment results are presented to demonstrate
the outlier resistance of the proposed � p-TTC, and showing the
effective and superior performance in both bistatic MIMO radar
localization and color image inpainting and denoising, compared
with state-of-the-art tensor completion approaches.

Index Terms— Low-rank tensor completion (LRTC), alternat-
ing minimization, � p-regression, tensor train (TT) rank, multiple-
input multiple-output (MIMO) radar, color image inpainting and
denoising.

I. INTRODUCTION

TENSORS, a.k.a., multidimensional multi-way arrays, are
an effective higher-order generation of vectors and matri-

ces [1]–[3]. The big data era endows immense opportunities
for ubiquitous tensors and their decompositions applications
by leveraging big data generated from widespread sensors and
ever-growing computing capability. Benefiting from the power
of multi-linear algebra as their mathematical backbone [4]–[6],
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they enable more efficient paradigm shift toward models for
versatile data analysis tools, compared to their counterparts
with standard flat-view matrix models. Therefore, they have
become increasingly popular and omnipresent across diverse
fields, ranging from signal and image processing, graphics,
computer vision to data mining, machine learning, and brain
modeling [7]–[11].

The success of low-rank matrix completion (LRMC) spurs
numerous researchers to extend its concept to low-rank ten-
sor completion (LRTC). In fact, due to the imperfection
of data collection, transmission and compression, the high-
dimensional data of interest are usually incomplete, hence,
data completion is fertile research ground to ensure data
integrity that merits further investigation. To this end, LRTC
acts as a powerful computational tool for extracting valuable
information from tensorial data. Given an observed incomplete
high-dimensional data, the objective of LRTC aims to predict
plausible missing entries by exploiting their correlation with
the observed ones. This problem has been extensively studied
in literature, and a growing number of promising LRTC meth-
ods have been proposed, instances include Bayesian CANDE-
COMP/PARAFAC (Bayesian CP) [12], high accuracy LRTC
(HaLRTC) [8], fast LRTC (FaLRTC) [8], simple LRTC via
tensor train (SiLRTC-TT) [7], tensor completion by parallel
matrix factorization via tensor train (TMac-TT) [7], fixed-point
iterative LRTC (FP-LRTC) [13], and tensor singular value
decomposition (t-SVD) [14]. In [12], CP tensor factorization
technique is introduced in tensor completion, where the latent
CP rank is automatically determined by exploiting a fully
Bayesian treatment. Still, however, it is challenging for LRTC
because of the NP-hard CP rank minimization. Therefore,
Tucker rank, as a promising alternative, is defined with the
ranks of unfolded matrices along each order of a tensor. On the
basis of Tucker decomposition, many works are proposed
for image completion, and instances include [8], [15]–[18].
Liu et al. [8] proposes a pioneer idea to approximate the
hard-to-handle CP rank function by the Tucker-based tensor
nuclear norm, with resulting two methods, namely, HaLRTC
and FaLRTC, by combining nuclear norms of all matrices
unfolded along each mode. Both of them achieve satisfac-
tory performance, while ignoring the structural information
of the tensor data. In [15], Tucker decomposition with the
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alternating least squares algorithm and an additional lowpass
Gaussian filtration are exploited to enhance the quality of
image inpainting. Reference [16] adopts a doubly weighted
strategy for nuclear norm along each mode to characterize
global sparsity prior of tensor. In Tucker rank, we notice
that unfolded matrices have unbalanced sizes, namely, varying
numbers between rows and columns. Since the rank of an
unfolded matrix is bounded by the minimal number of rows
and columns, the inefficiency of rank minimization due to
unbalance would render the resulting algorithms for capturing
the global information of a tensor in vain.

To address that, tensor train (TT) rank [19] is defined, which
consists of ranks of matrices unfolded in a well-balanced
matricization way, i.e., unfolding the tensor along permu-
tations of modes. On the basis of that, Bengua et al. [7]
introduces the SiLRTC-TT and TMac-TT approaches, which
are extended from the SiLRTC [8] and multi-linear matrix
factorization model, respectively. Using the matrix product
state representation of TT decomposition, a tensor completion
algorithm by alternating minimization under the TT model
(TCAM-TT) is proposed in [20], which presents noticeably
superior performance for a variety of real settings. On the
other hand, to incorporate the data factor priors and ten-
sor multi-linear structural information, a simultaneous tensor
decomposition and completion (STDC) method is developed
in [21]. Similar with the LRMC using approximate singular
value decomposition (SVD) based fixed-point continuation
algorithm (FPCA) [22], the FP-LRTC method in [13] is
proposed by employing operator splitting and convex relax-
ation techniques. To characterize informational and structural
complexity of multi-linear data, t-SVD [14] is employed with
applications to three-dimensional (3-D) and 4-D video data
completion and denoising from limited samples. Nevertheless,
the tensor nuclear norm minimization (TNNM)-based algo-
rithms suffer from high computation cost of multiple SVDs
at each iteration. What is more, how to determine the best
user-defined weights in TT rank is still an open problem.
As mentioned above, most of the existing TNNM algorithms
are based on the Frobenius norm to robustify against the
Gaussian noise.

Whereas non-Gaussian noises or outliers commonly exist in
many different types of data, e.g., image, video, text and bioin-
formatics. Many existing LRTC-based approaches explicitly or
implicitly assume that the noise is Gaussian distributed [23],
[24]. Therefore, the performance of these approaches may
severely degrade due to the existence of outliers. Moreover,
tensor decomposition with low-rank structures in TNNM is
sensitive to the presence of outliers, as it attempts to force
the outliers to fit the low-rank structure. It results in that the
conventional TNNM techniques fail to work properly when
the observations contain outliers as their derivations are based
on the �2-space, e.g., Frobenius norm of tensor residual error.
Herein, outliers refer to outlying entries whose values are
abnormally large. Numerous approaches have employed the
fact that the entry-wise �p-norm with p < 2 is less sensitive
to outliers than the Frobenius norm for robust LRTC. In [25]
and [26], �p-norm (0 < p < 2) is involved to assist to
address additive impulsive noise, with the resulting iteratively

reweighted tensor SVD (IR-t-SVD) and �p-PARAFAC meth-
ods, to recover the target tensor, respectively. This is also under
out consideration for LRTC purposes.

In this work, we propose to complete tensorial data from
both randomly missing entries and outliers based on a factored
form of TT-format representation. In our model, the latent
tensor is regularized by the low-TT-rank prior to exploit the
inter-fibers correlation, which is motivated by the fact that TT
rank enables better to capture the global correlation between
tensor entries for LRTC compared to its counterpart, namely,
Tucker rank [7], [27]. We derive a promising method using the
combination of alternating minimization and alternating direc-
tion method of multipliers (ADMM) under the �p-regression
(0 < p < 2) framework. The main contributions of this work
are summarized as follows:

• Owing to the fact that it is challenging to determine the
best user-defined weights in TT rank model, we propose
to employ �p-regression based on tensor factorization for
solving LRTC problems.

• To be robust against both missing entries and outliers,
an effective iterative �p-regression tensor train comple-
tion method (�p-TTC) is developed, where ADMM is
applied as the solver under the framework of augmented
Lagrangian multiplier.

• Finally, compared with state-of-the-art tensor completion
approaches, numerical experiments have been conducted
to verify the efficacy and superiority of the proposed
�p-TTC on both simulated and visual data, for bistatic
multiple-input multiple-output (MIMO) radar localiza-
tion and color image inpainting and denoising, respec-
tively. The code is available at https://sites.google.com/
site/qiliucityu/discussion.

The rest of the paper is organized as follows. In Section II,
the LRTC problem is formulated, where notations and prelim-
inaries on tensor decomposition are introduced. In Section III,
we propose the iterative �p-regression tensor completion
method based on the TT model. Numerical experiment results
are presented on LRTC with applications to bistatic MIMO
radar localization, and color image inpainting and denoising
in Section IV. Finally, conclusions are drawn in Section V.

II. BACKGROUND

A. Preliminaries

In this work, we adopt the tensor notations and preliminaries
from [5]. The order or mode of a tensor is defined as the num-
ber of tensor dimensions. Scalars, a.k.a., zero-order tensors,
are denoted by lowercase letters (x, y, z, · · · ). The first-order
and second-order tenosrs, namely, vectors and matrices, are
denoted by boldface lowercase letters (x, y, z, · · · ) and upper-
case boldface letters (X, Y, Z, · · · ), respectively. Tensors with
higher order are represented by calligraphic uppercase bold-
face letters (X ,Y,Z, · · · ). An N-mode or N-order tensor,
is denoted as X ∈ RI1×···×IN , where Ik is the dimension along
mode k and its element is expressed by X (i1, · · · , ik, · · · , iN ),
1 ≤ ik ≤ Ik , 1 ≤ k ≤ N . A mode-k fiber of a tensor X is a
vector defined by fixing all indices except for the kth index.

Definition 1 (Mode-k Matricization or Unfolding): A ten-
sor X ∈ RI1×···×IN is unfolded or reshaped into a matrix
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Fig. 1. Illustration of the TT-format.

X(k) ∈ RIk×(I1 ···Ik−1 Ik+1 ···IN ) by arranging the mode-k fibers
to be the columns of the resulting matrix. The corresponding
mapping relation between X and X(k) is:

X(k)(ik, j) = X (i1, · · · , ik, · · · , iN ),

j = 1 +
N∑

n=1,n �=k

(in − 1)Jn (1)

where Jn = ∏n−1
m=1,m �=k Im .

Definition 2 (Tensor Connect Product [19], [28]): For two
3rd-order tensors X ∈ Rr0×I1×r1 and Y ∈ Rr1×I2×r2 , the tensor
connect product is defined as:

XY = reshape((X(3))
T × (Y(1))) ∈ R

r0×(I1I2)×r2 (2)

where reshape(·) refers to a reshape operator which returns
an array of specified dimensions with the same entries as the
input data. Tensor connect product is to calculate the product
of two 3rd-tensors where the tensors are first unfolded into
matrices, and then the product of two matrices is computed.
Notice that the last dimension of the former must be equal to
the first dimension of the latter.

Definition 3 (Tensor Permutation From Lemma 2 [20]):
Given N th-order tensor X ∈ RI1,×··· ,×IN , the kth TT
permutation is XPk ∈ RIk×Ik+1×···×IN ×I1 ···Ik−1 with ele-
ment of XPk ( jk, · · · , jN , j1, · · · , jk−1) = X ( j1, · · · , jN ),
for any jk ∈ [1, Ik]. Therefore, we get XPk =
T race(XkXk+1 · · ·XNX1 · · ·Xk−1). As shown in Fig. 1,
the TT-format, a.k.a., TT network, is illustrated [29], [30].

B. Problem Formulation

Given a low-rank incomplete tensor T� ∈ RI1×···×IN with
missing entries where � is a subset of the complete set of
entries [I1] × · · · × [IN ], with [I ] being the list {1, · · · , I }.
The set � contains all tensor coordinates corresponding to the
observed entries in tensor T , and the subscript (·)� denotes
the projection on the known entries. The task of LRTC is
to complete the N th-order tensor T from its known entries
given by the index set �. Mathematically, it is formulated as
a rank minimization problem by incorporating the low-rank
information:

min
X

rank(X ), s.t. X� = T�. (3)

Due to the combinatorial nature of the rank function,
the rank minimization (3), however, is NP-hard. Many
attempts have been proposed to relax the underlying tensor
rank, including CP rank, Tucker rank, and TT rank.

For the Tucker rank, (3) is written by the following Tucker
rank optimization problem [31], [32]:

min
X(k)

N∑
k=1

αk rank(X(k)), s.t. X� = T�. (4)

where {αk}N
k=1 are defined as the nonnegative weights for

rank(X(k)) satisfying the condition
∑N

k=1 αk = 1. Neverthe-
less, Tucker rank is conceptually limited by the small upper
bound of each individual rank and may not be suitable for
describing global information of tensor [7], because of its
ranks of matrices stemming from unbalanced matricization
scheme, which is only efficient for more balanced matrices.

To deal with that, another type of tensor rank is the TT rank.
For the ease of optimization, a popular and practical solution is
to replace the nonconvex rank by convex nuclear norm, result-
ing in the TT nuclear norm optimization problem [7], [33]:

min
X

N∑
k=1

αk ||X(k)||∗, s.t. X� = T� (5)

with TT rank combining more balanced unfolded matrices
compared to Tucker rank, for tensor X ∈ RI1×···×IN . Herein,
X(k) are obtained by matricizing along mode k, k = 1, · · · , N .
The nuclear norm || · ||∗ represents the sum of singular values
λk , namely, ||X||∗ = ∑min(m,n)

k=1 λk for any X ∈ R
m×n .

Corrupted by the noise, (5) is modified as:

min
X

N∑
k=1

αk ||X(k)||∗, s.t. ||X� − T�||F ≤ δ (6)

where δ > 0 stands for the noise tolerance that controls the
fitting error, and || · ||F denotes the Frobenius norm of a tensor
by ||X ||F = ||vec(X )||2. || · ||2 and vec(·) denote the �2-norm
and vectorization operators, respectively. Although (6) works
well in the presence of additive Gaussian disturbance, its per-
formance can significantly degrade when T� contains outliers.
Moreover, how to choose the best user-defined parameters
{αk}N

k=1 is still an open problem.

III. ITERATIVE �p -REGRESSION TT COMPLETION

It is well known that �2-space optimization cannot resist
impulsive noise effectively. In contrast, �p-norm enables to
be robust against impulsive noise as it reduces the effect
of outliers via calculating the residual to power of p with
0 < p < 2. Therefore, in this work, we recast the problem (6)
using �p-regression:

min
X

||X� − T�||p
p (7)

to achieve outlier resistance. Obviously, (7) is hard to solve
because of the high nonconvexity of �p-norm.

Motivated by the Definition 2, (7) is written as:
min

X1,X2,··· ,XN

||(X1 · X2 · · ·XN )� − T�||p
p (8)

based on the assumption of TT rank information.
Remark 1: Regarding the TT rank of a sequence of tensors,

they can be determined directly by the diagonal singular
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matrices {λ[k]}N
k=1 ∈ Rrk×rk . Based on the Vidal’s decomposi-

tion [34], the tensor can be rewritten by

Xk =
∑

i1,··· ,iN

u[1···k]i1 ···ik λ[k]v[k+1···N]ik+1 ···iN (9)

where u[1···k]i1 ···ik = �
[1]
i1

λ[1] · · ·�[k]
ik

⊗k
�=1 ei� and

v[k+1···N]ik+1 ···iN = �
[k+1]
ik+1

λ[k+1] · · ·�[N]
iN

⊗N
�=k+1 ei� .

Moreover, borrowing the results from the TT decomposi-
tion [19], i.e., tensor factorization, the element of tensor X
can be expressed as:
X (i1, · · · , ik, · · · , iN )

= X1(:, i1, :) · · ·Xk(:, ik, :) · · ·XN (:, iN , :) (10)

where X (:, ik, :) ∈ R
rk−1×Ik ×rk , k = 1, · · · N , with rk being

the TT rank. It is noteworthy that r0 = rN = 1. Specifically,
X1 and XN are actually the boundary matrices with the sizes
of r0×I1×r1(r0 = 1) and rN−1×IN ×rn(rn = 1), respectively.

From (10), we observe that

X (i1, · · · , iN ) = T race(X1(:, i1, :) · · ·XN (:, iN , :)) (11)

for the scalar X (i1, · · · , iN ), where Trace(·) denotes the trace
operator. Hence, (8) can be further optimized by involving the
trace operator, that is:

min
X1,X2,··· ,XN

||(Trace(X1 · X2 · · ·XN ))� − T�||p
p. (12)

Different with [2], [35], tensor factorization is exploited
to avoid SVD computation. After determining each tensor
{Xk}N

k=1, the target tensor is obtained as X = X1 · X2 · · ·XN .
In this work, we adopt the alternating minimization strategy
to solve (12), we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X t+1
1 = arg min

X1

||(Trace(X1 · X t
2 · · ·X t

N ))� − T�||p
p

X t+1
2 = arg min

X2

||(Trace(X t+1
1 · X2 · · ·X t

N ))� − T�||p
p

...

X t+1
N = arg min

XN

||(Trace(X t+1
1 · X t+1

2 · · ·XN ))� − T�||p
p

(13)

with updating one tensor Xk by fixing others for each time
step, 1 ≤ k ≤ N . Now, we focus on solving (13) for an Xk :

X t+1
k

= arg min
Xk

∣∣∣∣∣∣(Trace(X t+1
1 · · ·Xk · · ·X t

N ))� − T�

∣∣∣∣∣∣p

p

= arg min
Xk

∥∥∥(T race(XkX t
k+1· · ·X t

NX
t+1
1 · · ·X t+1

k−1))
Pk
� −T�

∥∥∥p

p

= arg min
Xk

∣∣∣∣∣∣(Trace(XkU))
Pk
� − T�

∣∣∣∣∣∣p

p
(14)

where (·)Pk denotes the tensor permutation, and
U = X t

k+1 · · ·X t
NX

t+1
1 · · ·X t+1

k−1 ∈ Rrk×(Ik+1 ···IN I1···Ik−1 )×rk−1 .
The second equality holds due to the Definition 3. According
to Definition 1, as the TT-format unfolded matrices X(k)

share the same entries of the tensor X , (14) is equivalently
transformed into:
X t+1

k = arg min
X(k)

∣∣∣∣
∣∣∣∣((T race(XkU))

Pk
�

)
(k)

− (T�)(k)

∣∣∣∣
∣∣∣∣

p

p
(15)

by using mode-k matricization. Recall that X(k) is obtained
by unfolding along k modes and thus its rank captures the
correlation between k modes and the other N − k modes.
Hence, it enables better to capture the global correlation of
a tensor in (15) as it encompasses of correlations between
permutations of all modes [7]. On the basis of that each slice
of Xk , namely, Xk(:, ik, :), 1 < ik < Ik , corresponds to each
row of X(k), we can solve (15) by separate manner with Ik

similar subproblems. Regarding ik th subproblem, we have:
X t+1

k (:, ik, :)
= arg min

X(k)

∣∣∣∣
∣∣∣∣((T race(XkU))

Pk
�

)
(k)

(ik, :)

− (T�)(k) (ik, :)
∣∣∣∣p

p

= arg min
X

∑
j∈�/ik

∣∣∣∣∣∣Trace
(

X × (UPk
�/ik

)(k)(:, j, :)
)

− (T�)(k) (ik, j)
∣∣∣∣p

p (16)

where X ∈ Rrk−1×rk and �/ ik denotes a subset of the complete
set of entries [rk]× [Ik+1 · · · IN I1 · · · Ik−1]× [rk−1] excluding
ik , ik = 1, · · · , Ik . The second equality is derived due to the
entry-wise summation of all entries. For each j , (UPk

�/ik
)(k)

(:, j, :) ∈ Rrk×1×rk−1 can be regarded as a matrix of size rk ×
rk−1. Following the results of linear algebra, Trace(UV) =
vec(VT )T vec(U) for any matrices U and V. Therefore, (16) is
further modified as:
X t+1

k (:, ik, :) = arg min
X

∑
j∈�/ik

∣∣∣∣
∣∣∣∣vec

(
(UPk

�/ik
)(k)(:, j, :)T

)T

× vec(X) − (T�)(k) (ik, j)
∣∣∣∣p

p (17)

where (·)T stand for the transpose operator. For the ease of
simplicity, (17) is rewritten as:

X t+1
k (:, ik, :) = arg min

X
||Avec(X) − y||p

p (18)

where A ∈ R[ j∈�/ik ]×(rk−1rk ) and y ∈ R[ j∈�/ik]. Let e equal to
Avec(X)−y, then it is necessary to convert the unconstrained
problem into a constrained one, that is:

min
e

||e||p
p , s.t. e = Avec(X) − y (19)

The augmented Lagrangian of (19) is:
Lμ(e, X,�) = ‖e‖p

p + 〈�, Avec(X) − y − e〉
+μ

2
‖Avec(X) − y − e‖2

2 (20)

where � is a vector of Lagrange multipliers. It is difficult to
minimize the objective function over multiple sets of variables.
The popular and practical solution is applying ADMM [36] as
the solver to alternatively optimize one set of variables with
others fixing. To solve (20), the main steps corresponding to
ADMM are concluded as follows:

Xl+1 = arg min
X

Lμ(el , X,�l) (21)

el+1 = arg min
e

Lμ(e, Xl+1,�l) (22)

�l+1 = �l + μ(Avec(Xl+1) − y − el+1). (23)
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Algorithm 1: �p-TTC

Require: T� ∈ RI1×···×IN , � and r = [r1, r2, · · · , rN ], p,
ε = 10−6, ξ = 1.1.
Initialize: Randomize XXX i

for t = 1, 2, · · · do
for k = 1, 2, · · · , N do

X t+1
k = arg min

X(k)

∥∥∥∥(
T race(XkU)

Pk
�

)
(k)

− (T�)(k)

∥∥∥∥
p

p
.

for ik = 1, 2, · · · , Ik do
X t+1

k (:, ik, :) = arg min
X

‖Avec(X) − y‖p
p .

1) Convert the unconstrained problem into the con-
strained one, namely:

min
e

‖e‖p
p, s.t. e = Avec(X) − y.

2) Compute the corresponding augmented
Lagrangian, then ADMM is applied as the solver.
for l = 1, 2, · · · do

i. Update Xl+1 via (24)
ii. Update el+1 via (25)

Case 1: p = 1, solved by (26);
Case 2: 0 < p < 1, solved by (27);
Case 3: 1 < p < 2, solved by (30).

iii. Update �l+1 via (23)
end for

end for
end for
Stop if the stopping criterion is satisfied.

end for
Ensure: Target tensor Trace(X t+1

1 X t+1
2 · · ·X t+1

N )

Step 1: Update Xl+1

In subproblem (21), it can be equivalently converted into a
�2-norm minimization problem:

arg min
X

∥∥∥∥Avec(X) − (el − �l

μ
+ y)

∥∥∥∥
2

2
(24)

which has a closed-form solution X = reshape(A−1(el − ���l

μ +
y), [rk−1, rk ]), and reshape(x) denotes to reshape a vector
x ∈ R

rk−1rk into a matrix X ∈ R
rk−1×rk .

Step 2: Update el+1

In the second subproblem (22), we actually solve the
following problem:

min
e

1

μ
‖e‖p

p + 1

2
‖e − z‖2

2, 0 < p < 2 (25)

where z = Avec(X) + �l

μ − y).
For the case of p = 1, based on the soft-thresholding

operator [37], we can obtain the closed-form solution as:
ei = sign(zi ) max(|zi | − 1/μ, 0) (26)

where ei and zi are the i th entry of e and z, respectively.
For the case of 0 < p < 1, we follow the result in [38] to

get the corresponding solution:

ei =
{

0, if |zi | ≤ ha

sign(zi )β�, if |zi | > ha
(27)

where ha = βa + p
μβ

p−1
a with βa = ( 2

μ(1 − p))
1

2−p and β� ∈
(βa, |zi |) is obtained by

β + 1

μ
pβ p−1 = |zi |. (28)

The solution of (28) is the convergent point of the following
iteration:

βl+1 = ρ(βl) (29)

where ρ(β) = |zi | − 1
μ pβ p−1 with the initial value of β� ∈

(βa, |zi |).
For the case of 1 < p < 2, the problem (25) is convex, and

can be solved by [39]:

ei =
{

arg min{g(0), g(r+
i )}, if zi ≥ 0

arg min{g(0), g(r−
i )}, if zi < 0

(30)

where g(ei ) = 1
2 (ei −zi )

2+ 1
μ |ei |p , r+

i and r−
i are the solutions

of g′(ei ) in the case of zi ≥ 0 and zi < 0, respectively.
For zi ≥ 0, g′(ei ) is monotonically creased in [0, zi ] and
g′(0)g′(zi ) < 0. Thereby, r+

i locates in [0, zi ], which can be
found by the bisection method with a complexity of O(1).
In the same way, r−

i can be got from solving g′(ei ) via the
bisection method in the feasible region [zi , 0].

After obtaining the Xl+1 and el+1, the Lagrange multiplier
matrix �l+1 is updated as (23). The stepsize μ is computed by
μl+1 = ξμl , where ξ > 1 is a constant. The pseudocode of the
proposed �p-TTC is provided in Algorithm 1. The convergence
criterion of the proposed �p-TTC is characterised by

||X t+1 − X t ||F

||X t ||F
≤ ε (31)

with the relative error of estimate between two successive
iterations. In this work, ε is set at 10−6. Although the
convergence theory of ADMM has been well-established for
a variety of ADMM variants in [36], including two-block
ADMM, they cannot be directly applicable for our problem
with missing entries. The reasons are twofold: 1) �p-regression
is utilized to minimize the fitting error instead of appearing
as a regularization term to promote sparsity, and �p-norm
with 0 < p < 1 is highly nonconvex; 2) Because of
the TT model, a sequence of tensor connect products exist,
which makes the resulting �p-regression optimization problem
nonconvex. Thereby, it is still an open problem that deserves
more studies in the future. However, the proposed method
is indeed convergent,1 and verified by the empirical results
in Figs. 2 and 3. From the simulation results, we can see that
the proposed method enjoys not only smaller MSE, but also
faster convergence in terms of very few iterations, less than
5 times.

In this work, the proposed �p-TTC can deal with the
�p-regression tensor completion problem at 0 < p < 2.
In the presence of both missing entries and outliers corrupted
observations, the proposed method can achieve the best per-
formance at p = 1, as shown in Fig. 4. Taking the example
of color image inpainting and denoising, we can clearly and

1The proposed method in the case of p < 1 only converges to a local point
because of the non-convexity of �p -norm.
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Fig. 2. Illustration of the convergence of the proposed method, as compared
to different algorithms, where is examined on the bistatic MIMO radar
tensorial data, and the parameter settings are the same in Section IV.

Fig. 3. Illustration of the convergence of the proposed method, as compared
to different algorithms, where is examined on the color image inpainting and
denoising tensorial data, and the test image is Windows.

Fig. 4. Illustration of PSNR conditioned on different p, 0 < p < 2, where
four examples are specified to show the inpainting and denoising performance
of the proposed method at 0.4, 0.8, 1.2 and 1.8, respectively.

vividly observe that the proposed method provides different
performance with respect to p in terms of peak signal-to-
noise (PSNR), where four results are obtained from p = 0.4,
0.8, 1.2, and 1.8, respectively.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed �p-TTC method
with extensive experiments on both simulated complex data
and real visual data. The proposed method is benchmarked
against APGL [40], FPCA [22], FP-LRTC [13], HaLRTC [8],

conventional PARAFAC [41] with full data and Cramér-
Rao lower bound (CRLB) [42] for bistatic MIMO radar
localization, and TCAM-TT [20], FaLRTC [8], SiLRTC [7],
�p-PARAFAC [26] and IR-t-SVD [25] for color image inpaint-
ing and denoising, respectively.

A. Bistatic MIMO Radar Localization

In this section, the problem of source localization in bistatic
MIMO radar is tackled via LRTC, where the direction of
departure (DOD) and direction of arrival (DOA) are jointly
estimated with the only available partial data at the front-end
during multiple pulse periods. We consider the MIMO radar
configuration with following parameters:

• Both transmit and receive arrays are uniform linear
arrays (ULA) with Mt and Mr colocated anten-
nas, respectively. dt and dr stand for the respective
inter-element distances of antennas.

• K targets in the far-field, where {θmk}K
k=1 and {φnk}K

k=1
denote the DODs and DOAs with respect to the mth
transmit and nth receive array normal, respectively;

• The transmit and receive steering matrices respectively
are A = [a(θ1), · · · , a(θK )] ∈ CMt ×K and
B = [b(φ1), · · · , b(φK )] ∈ CMr ×K , with the
steering vectors relative to ULA being a(θk) =
[1, e j2πdt sin(θk)/λ, · · · , e j2πdt (Mt−1) sin(θk)/λ]T and
b(φk) = [1, e j2πdr sin(φk)/λ, · · · , e j2πdr (Mr −1) sin(φk)/λ]T .

• The coherent processing interval (CPI) consists of Q
consecutive pulses and the radar cross section (RCS) is
varying independently from pulse to pulse, where the
RCS coefficients follow the Swerling II model [43]. C =
[c1, · · · , cQ ]T with cq = [γ1q, · · · , γK q ]T accounts for
the Doppler effect and RCS fading;

• St = [s1, · · · , sMt ]T ∈ CMt×L holds the Mt narrowband
pulse waveforms transmitted by the mth subarray, L being
the number of samples per pulse period. The transmitted
orthogonal waveforms are the columns of a Hadamard
matrix.

Stacking Q pulses, Mr × Mt × Q tensor T is obtained by
following the PARAFAC model, details refer to [40], [44]:

T = IK×1B×2A×3C + N (32)

X = T� (33)

where I ∈ CK×K×K is an identity tensor, N denotes the
noise tensor, and X is the partially observed data. Given
the restored X , the matched-filter output can be obtained.
Then the DODs and DOAs are computed via conventional
parameter estimators, such as [45]. In our simulations,
Mt = Mr = 20, K = 5, Q = 256, L = 256 and {θk, φk}K

k=1 =
{{10◦,−30◦}, {20◦,−15◦}, {30◦, 5◦}, {−10◦, 15◦}, {0◦, 25◦}}.
It is worth noting that since the simulated data for MIMO
radar localization is complex, it should be transformed to
real-valued data [46], and then restored by the proposed
�p-TTC. Also, we can restore the target tensor from the real
and imaginary parts, respectively. In addition, all algorithms
are evaluated on degraded tensorial data with total missing
ratio ρ at ρ = 40%.
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Fig. 5. AMSE versus for different compared algorithms in Gaussian mixed model (GMM) noise, including APGL, FPGA, FP-LRTC, HaLRTC, and the
proposed �p -TTC. Note that “Full data” means the result of conventional PARAFAC on the full data, and CRLB is not plotted here because it cannot be
directly applied to the case of both missing entries and GMM noise.

Fig. 6. AMSE versus SNR for different compared algorithms in Gaussian noise, where CRLB is compared as benchmark.

To measure the performance of the proposed method,
the average mean square error (AMSE) between the estimated
parameters and the original ones is used, which is defined as:

AMSE = 1

M K

M∑
m=1

K∑
k=1

(ξk − ξ̂m
k )2 (34)

where M is the number of Monte Carlo trials, and ξ̂m
k is the

estimate of parameter ξk in the mth trial. Herein, ξk denotes
the DOD θk or DOA φk , and M = 100.

In Fig. 5, the Swerling II model is chosen and we compare
the proposed method versus state-of-the-art LRTC-based local-
ization techniques via a Monte Carlo simulation, including
APGL, FPGA, FP-LRTC, HaLRTC, the proposed �p-TTC
at p = 1 and CRLB. Moreover, the performance of the
conventional PARAFAC method [41] based on full data is
provided as benchmark. In this experiment, the performance

of the proposed method robust against Gaussian mixture
model (GMM) noise [47], [48] is investigated. GMM enables
to well model the phenomenon in the presence of both
Gaussian noise and outliers. Similar with [48], the ratio
between variances of two-term Gaussian mixture noise is 100,
signal-to-noise ratio (SNR) = 30 dB, and 10% noise samples
are considered as outliers. From Fig. 5, we observe that
the proposed method shows the best estimation performance
among all approaches.

To further evaluate the performance of the proposed method,
AMSE versus SNR is conducted in the presence of Gaussian
noise [49], as shown in Fig. 6. The SNR is varied from 0 dB
to 30 dB. Different with Fig. 5, the conventional PARAFAC
method with full data is close to CRLB in Gaussian noise,
which is also employed as the baseline in our work. For
DOD estimation, it can be seen that the proposed �p-TTC
outperforms all compared approaches, and achieves the best
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Fig. 7. Visual comparison of different LRTC approaches on three color images: Windows, Pillars and Peppers, with 30% total missing and corrupted
by 5dB salt-and-pepper noise. From left to right, the 1st column: ground truth; 2nd: incomplete and corrupted; 3rd: the proposed �p -TTC; 4th: TCAM-TT;
5th: FaLRTC; 6th: SiLRTC; 7th: �p-PARAFAC; Last: IR-t-SVD.

TABLE I

COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART

TENSOR COMPLETION APPROACHES IN DIFFERENT MISSING RATIOS
AND GMM NOISE, WHERE MSE IS APPLIED AS THE

METRIC TO EVALUATE THE PERFORMANCE

performance among them for DOA estimation but is on par
with APGL. Moreover, we observe that LRMC-based method,
like FPCA, is inferior to LRTC-based ones.

In Table I, we compare the proposed method with numerous
tensor completion approaches in different missing ratios from
30% to 70%, for bistatic MIMO radar localization. Unless
otherwise specified, the parameter settings are the same as
mentioned before. The quantitative results have clearly shown
that the proposed method is superior to other compared
methods, at least 2 order of magnitudes.

B. Color Image Inpainting and Denoising

Most of the existing image inpainting algorithms are devel-
oped for grayscale images. It is not trivial to extend them
for color image inpainting since the noise statistics in R,
G, and B channels can be very different for real noisy
images except for the existence of outliers. In this section,
simulation results are carried out to demonstrate the com-
pletion and denoising performance of the proposed �p-TTC

(p = 1) on the standard color image set, including Windows
(300 × 300 × 3), Pillars (300 × 300 × 3), Peppers (317 ×
316 × 3), H ouse (225 × 225 × 3), Lenna (220 × 220 × 3),
Building2 (300 × 300 × 3), Sea (300 × 300 × 3), T ree
(300 × 300 × 3), and Shadow (360 × 640 × 3).

Two objective measures, namely, PSNR and structural
similarity (SSIM) [50] indexes, are adopted to provide quanti-
tative and quality evaluations of the inpainting and denoising
results. Since the PSNR is often inconsistent with human
eye perception, even though it is the mostly used quality
measure, the SSIM is employed to comprehensively reflect the
performance. For the ground truth image X and the restored
image X̂ , the PSNR is defined as:

PSNR = 10log10
2552

MSE
(35)

where 255 is the peak value of the color image under concern,
with the mean squares error (MSE) given by

MSE = ||X − X̂ ||F

||X ||F
(36)

Therefore, the smaller the MSE, the larger the PSNR, which
implies the better performance.

The inpainting and denoising performance of the
proposed method is examined with comparison to the
state-of-the-art tensor completion approaches, including
TTC [7], FaLRTC [8], SiLRTC [7], �p-PARAFAC [26] and
IR-t-SVD [25]. The results are presented in Fig. 7, where 30%
total entries are missing and the density of salt-and-pepper
noise is 0.5. We can see that the proposed �p-TTC achieves
the highest PSNR and SSIM on three color images, namely,
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Fig. 8. The test images for Table II, namely, H ouse (225 × 225 × 3), Lenna (220 × 220 × 3), Building2 (300 × 300 × 3), Sea (300 × 300 × 3),
Tree (300 × 300 × 3), and Shadow (360 × 640 × 3).

TABLE II

COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART TENSOR COMPLETION APPROACHES IN DIFFERENT MISSING RATIOS WITH
2DB SALT-AND-PEPPER NOISE, WHERE MSE IS APPLIED AS THE METRIC TO EVALUATE THE PERFORMANCE

TABLE III

ROBUSTNESS OF THE PROPOSED METHOD CONDITIONED ON DIFFERENT LEVELS OF IMPULSIVE NOISE

Windows, Pillars and Peppers. In addition, from the
viewpoint of quantitative evaluation, a series of color images
in Fig. 8 with different sizes are added into the simulation,
and the results are tabulated in Table II. Consistent with the
results in Table I, the proposed method also provides better
performance in terms of MSE metric among all compared
tensor completion approaches. We observe that TTC and
�p-PARAFAC achieve comparable performance but still
are inferior to ours. On the other hand, from Fig. 7 and
Table II, it is verified that the proposed method can achieve

crystal clear image with strong structural integrity, and are
showing good performance in terms of PSNR and MSE,
respectively.

To further evaluate the robustness of the proposed method,
we have conducted experiments on color image inpainting and
denoising for different levels of impulsive noise, as tabulated
in Table III. We observe that the proposed method achieves the
best performance among all counterparts in terms of PSNR and
SSIM metrics, which is consistent with our former analysis.
The success of �p-TTC is attributed to the �p-regression
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Fig. 9. Evaluation on Yale Face dataset by UCSD Computer Vision lab, where 50% missing entries and 6 dB salt and pepper noise are utilized to verify
the robustness of the proposed method.

for non-Gaussian distribution. Moreover, in Figs. 9 and 10,
we compare our method with several competitors on Yale Face
dataset [51] and Flickr-Faces-HQ dataset [52], respectively,

where 50% missing entries and 6 dB salt and pepper noise are
added. Experimental results are presented, compared to other
approaches, which vividly show the obtained image restored
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Fig. 10. Evaluation results on Flicker-Faces-HQ dataset.

by the proposed method can achieve crystal clear image in
both subjective and objective metrics.

V. CONCLUSION

In this work, a promising �p-TTC method is proposed to
recover the missing entries and suppress the outliers from
tensorial data. Motivated by the tensor factorization, a factored

form of TT-format representation is applied into �p-regression
minimization, which has the advantage of not requiring to
pre-define the best user-defined weights in TT rank model. The
proposed method succeeds to restore the target tensor from
both missing entries and outliers corrupted observations. The
effectiveness and superiority of the proposed scheme is verified
by the applications of bistatic MIMO radar localization and
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color image inpainting and denoising tests, from simulated
to visual data, respectively. However, although the proposed
method is empirically convergent, the theoretical analysis of
convergence is still an open problem.
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