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OFDM-DCSK System via Matrix Recovery
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Abstract— In this paper, we devise a sparse-coded orthogonal
frequency division multiplexing (OFDM) differential chaos shift
keying (DCSK) communication system based on low-rank matrix
recovery which can handle Gaussian background noise and
outlier-contaminated symbols simultaneously. As the noise-free
OFDM-DCSK symbol matrix has rank 1, we exploit the vector
outer product for its modeling, while sparse coding is also applied
to reduce the transmission energy. To demodulate information
bits from the sparse-coded signal, we formulate an objective
function which consists of a sum of Frobenius norm for rank-1
matrix recovery and ℓ0-norm for identifying the possibly outlier-
contaminated symbols, with a self-adaptive weight parameter.
The resultant optimization problem is solved iteratively via
block coordinate descent, and the Laplacian kernel with the
Silverman’s rule is adopted for outlier detection. Theoretical
analysis including convergence of the objective function, bit error
rate (BER), energy efficiency and computational complexity, are
provided. Simulation results show that the proposed system has
comparable mean square error and BER performance with the
ℓp-norm minimization based matrix recovery approach at p = 2
in additive white Gaussian noise, and is superior to that of
p = 1 in Middleton class A noise, even when sparse coding is
applied. Moreover, compared with other binary DCSK systems,
our system achieves higher energy efficiency thanks to the sparse
coding.

Index Terms— Differential chaos shift keying, sparse coding,
low-rank matrix recovery, bit error rate, impulsive noise, energy
efficiency.
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I. INTRODUCTION

AWIRELESS communication system is easily attacked
by malicious users for its inherent openness to natural

environments and broadcast characteristics. To protect the
system from being attacked, chaotic communication is a
powerful encryption technique [1], thanks to the high-security
properties of chaotic sequences [2] such as sensitivity of
initial value, good auto-correlation, resistance to interference,
pseudo randomness and ergodicity. Chaotic communication
techniques are widely used in data transmission, including
ultra-wide-band (UWB) [1], [3], power line communication
(PLC) [4], and vehicle-to-vehicle (V2V) communication [5].
The chaotic sequences are used to modulate information bits,
and this kind of techniques is referred to as chaotic modu-
lation, which can be classified as coherent and non-coherent
types. Their difference is that the former needs to regenerate
the chaotic sequence at the receiver while this procedure is not
required in the latter. Therefore, non-coherent modulation has
less complexity than the coherent one, and has been widely
discussed [6], [7].

Among various non-coherent chaotic modulation schemes,
differential chaos shift keying (DCSK) [6] has attracted con-
siderable attention. In DCSK, a reference chaotic sequence is
transmitted, and the subsequent information-bearing chaotic
sequence is generated by multiplying binary phase shift keying
(BPSK) symbols by the reference chaotic sequence. Thanks to
the reference sequence, the receiver does not need to regen-
erate the chaotic waveform, which reduces the need of chaos
synchronization and significantly lowers the complexity. More-
over, in many communication scenarios such as UWB, PLC
and V2V, DCSK can provide satisfactory bit error rate (BER)
for reliable transmission [1]. However, since DCSK needs to
transmit 2 sequences in different time slots for one symbol,
its transmission efficiency is low, while highly-complex delay
line circuits are involved. In order to enhance the efficiency,
the M -ary modulation using Hilbert transform [8], [9], Walsh
code [10], and index modulation [11] have been suggested
but they cannot solve the delay line issue. In fact, delay line
can be avoided by arranging different sequences in different
subcarriers rather than in different time slots, which is the main
idea of multi-carrier (MC) transmission. Since one reference
sequence can be used for demodulating multiple information-
bearing sequences, the MC based DCSK systems are able to
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attain significantly higher efficiency than the traditional DCSK
systems [12]. Furthermore, in order to accelerate the computa-
tional efficiency of the MC-DCSK, the orthogonal frequency
division multiplexing (OFDM) technique is applied [13] via
fast Fourier transform (FFT). Based on the OFDM-DCSK,
numerous studies have been performed including multi-user
extension [14], application in underwater acoustic communi-
cations [15], peak-to-average power ratio reduction [16], and
security enhancement [17], [18].

Since impulsive noise occurs in broadband communica-
tions, there is a need for its suppression including broad-
band OFDM [19] and PLC [20], [21] based systems. When
OFDM-DCSK is applied in PLC, the impulsive disturbance
together with Gaussian noise in PLC channels can signifi-
cantly degrade the BER performance [22], [23], [24]. How-
ever, handling of outlier-contaminated data has not been
thoroughly investigated in the current DCSK-based systems.
In [25], the reference sequence is repeated and moving
average is employed at the receiver to suppress the Gaus-
sian noise, while [26] also exploits average computation
at the receiver, but it applies the iterative chaos generator.
In addition, to reduce the noise for M -ary DCSK sys-
tems, [27] uses a divide-and-conquer strategy. For MC-DCSK
systems, [28] designs an iterative receiver to suppress Gaussian
noise, and [29] develops a feedback module of correlation
coefficients to enhance the noise-tolerance performance of
M -ary modulation. To deal with impulsive noise, [30] uses
replica piecewise frame, and [31] develops a joint position
and constellation mapping scheme. Moreover, [32] deploys
bit-interleaved coded modulation for resisting impulsive noise
in M -ary DCSK systems. However, they only focus on the
DCSK in the time domain, and do not consider enhancing the
transmission efficiency by the MC structure. Recently, we have
proposed a rank-1 matrix approximation based OFDM-DCSK
receiver using ℓp-norm [33] to resist outliers. Nevertheless, the
computational complexity is relatively high [34], [35], [36]
because ℓp-norm minimization requires an iterative updating
procedure.

In this work, utilizing the rank-1 property of the
noise-free OFDM-DCSK symbol matrix, we propose using
ℓ0-norm to detect outlier-contaminated data to achieve robust-
ness. We also suggest sparse coding for transmission energy
reduction. To restore information symbols from the sparse-
coded (SC) signal, we formulate an optimization problem
which consists of a Frobenius norm for rank-1 matrix recov-
ery and an ℓ0-norm for handling outliers. Moreover, matrix
factorization is applied to obtain the solution for multiple
variables, and we utilize block coordinate descent (BCD) [37],
[38] to decompose the resultant problem into simpler sub-
problems. In one subproblem, only one variable is optimized
at each iteration, while the remaining variables are fixed.
Subsequently, all subproblems are alternatingly solved in a
computationally efficient manner. Compared with [33], the
proposed system effectively operates in the scenarios when
both Gaussian background noise and impulsive disturbance
occur at the same time without the need of determining an
appropriate value of p. Furthermore, our system has higher

energy efficiency than other competing binary DCSK systems
thanks to the sparse coding.

Our novelty and technical contributions are summarized as:
1) An SC-OFDM-DCSK system via ℓ0-norm minimization

based rank-1 matrix recovery is proposed to suppress
outliers. In our matrix completion formulation, ℓ0-norm
minimization is proposed to detect the outliers or impul-
sive noise components. After excluding the outlier-
contaminated entries, ℓ2-norm based matrix factorization
solver can offer enhanced reliability even in impul-
sive noise environments. Furthermore, by exploiting the
matrix recovery capability for an incomplete low-rank
symbol matrix, sparse coding is devised at the transmit-
ter to generate zero-valued symbols in the time domain,
indicating less transmission energy is involved.

2) We derive the BER in additive white Gaussian noise
(AWGN) and Middleton class A noise, which is a
common impulsive noise model, of the proposed sys-
tem, and the BER performance over fading channels
is also evaluated. Moreover, the convergence, energy
efficiency and computational complexity are analyzed.
In particular, the proposed system has higher energy
efficiency than competing binary DCSK systems, and
is computationally simpler than [33] at p < 2.

3) We demonstrate that our solution can achieve compara-
ble mean square error and BER performance with [33]
at p = 2 in AWGN, which is the optimum detector, and
outperforms [33] at p ≤ 2 in the presence of Middleton
class A noise with and without sparse coding. Note
that the hyperparameter in our scheme is automatically
adjusted to fit different noise environments while only a
fixed value of p is allowed in [33].

The rest of the paper is organized as follows. Section II
presents the structures of the transmitter and receiver of the
proposed SC-OFDM-DCSK system, where impulsive noise
suppression and symbol recovery from sparse-coded symbols
are achieved by ℓ0-norm minimization and rank-1 matrix
completion. The convergence, BER, energy efficiency and
computational complexity, are analyzed in Section III. Numer-
ical examples for assessing and corroborating the system
performance are included in Section IV. Finally, Section V
concludes the paper.

We use bold upper case and lower case letters to represent
matrices and vectors, respectively. The superscripts (·)T and
(·)H denote transpose and Hermitian transpose, respectively,
and ◦ is the element-wise product. Besides, ℜ{·} and ℑ{·}
stand for the real and imaginary parts of a complex-valued
number or vector. Moreover, E{·} denotes the expectation
operator, while ∥ · ∥F is the Frobenius norm and ∥ · ∥0 is
the ℓ0-norm which returns the number of non-zero elements.
Furthermore, | · | means the modulus of a complex number or
the cardinality of a set. Finally, R and C denote the sets of
real and complex numbers, respectively.

II. ℓ0-NORM RANK-1 MATRIX RECOVERY BASED
SC-OFDM-DCSK SYSTEM

In this section, we present the structure of our robust rank-1
matrix recovery based SC-OFDM-DCSK system.
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Fig. 1. Block diagram of SC-OFDM-DCSK transmitter.

A. Transmitter Design

Figure 1 depicts the block diagram of the proposed SC-
OFDM-DCSK transmitter. Compared with the conventional
structure [13], we introduce a sparse coding module before
inverse FFT (IFFT) for energy reduction. The chaos gener-
ator first produces chaotic sequences using the second-order
Chebyshev polynomial function (CPF), which is

xk+1 = 1− 2x2
k, xk ∈ (−1, 0) ∪ (0, 1) (1)

where xk represents the kth chip, 0 ≤ k ≤ β − 1, and β is
the sequence length. Then chaotic modulation is performed by
multiplying the sequence with the BPSK data symbols which
carry information bits after serial-to-parallel (S/P) conversion.
The kth chip corresponding to the nth subcarrier is denoted
as dn,k = snxk, where indices 1 ≤ n ≤ N − 1 refer to the
information-bearing sequences, and n = 0 corresponds to the
reference sequence as d0,k = xk. They are then sent to sparse
coding and IFFT modules to generate sparse chaotic OFDM
signals. In Fig. 1, owing to the sparse coding, a portion of
{sΩi,k

} is 0 via transforming {dn,k} to {pn,k}. To introduce
the sparse coding, we first express the IFFTs of {dn,k} and
{pn,k} as:

si,k =
1√
N

N−1∑
n=0

dn,k exp
(

j2πni

N

)

=
xk√
N

N−1∑
n=0

sn exp
(

j2πni

N

)
= xks̄i (2)

sΩ(i,k) = si,kΩi,k (3)

where si,k, sΩ(i,k) and Ωi,k are the (i + 1, k + 1) entries
of SSS ∈ CN×β , SSSΩ ∈ CN×β , and ΩΩΩ ∈ RN×β , respec-
tively, i = 0, · · · , N − 1, k = 0, · · · , β − 1, and s̄i =∑N−1

n=0 sn exp(j2πni/N)/
√

N . According to (2), the rank of
SSS is 1, indicating that a subset of the matrix entries can
fully characterize SSS. As a result, we suggest only transmitting
partial entries of SSS in order to reduce the transmission energy,
which is interpreted as sparse coding in the two-dimensional
space. Given a pre-defined binary matrix ΩΩΩ which contains
randomly-distributed values of either 0 or 1, the incomplete
matrix SSSΩ is formed by SSSΩ = SSS ◦ΩΩΩ, where its element-wise
form is given in (3). According to (3), the transmitted sΩ(i,k)

has zero value when Ωi,k = 0, hence sparse coding is achieved
in the time domain, leading to energy consumption reduction.
Rewriting (2) and (3), sparse coding corresponds to:

pn,k =
1√
N

N−1∑
i=0

sΩ(i,k) exp
(
−j2πni

N

)

=
1√
N

N−1∑
i=0

si,kΩi,k exp
(
−j2πni

N

)

=
1
N

N−1∑
i=0

N−1∑
n′=0

dn′,k exp
(

j2πn′i

N

)
Ωi,k exp

(
−j2πni

N

)

=
1
N

N−1∑
n′=0

dn′,k

N−1∑
i=0

exp
(

j2π(n′ − n)i
N

)
Ωi,k (4)

where the first line is obtained by performing FFT on {sΩ(i,k)}
and the relation between input dn′,k and output pn,k is
revealed. According to [39], when the number of observed
entries is sufficiently large, SSS can be uniquely recovered from
SSSΩ with high probability. Based on our empirical study, it is
found that comparable performance is achieved when the
number of zeros in ΩΩΩ is no more than 0.2 Nβ. That is to
say, we can remove up to 20% of the elements in SSS.

It is worth mentioning that although our system and [40]
have similar names, their transceiver structures and main
focuses are different. In [40], sparse coding refers to the
multiplication of sparse binary codes from a codebook with
information symbols in the frequency domain. In doing so,
multi-user access is achieved by allowing information symbols
from different users to superimpose in the frequency domain.
That is, the symbols are sparse prior to superimposing in
the frequency domain, but they are not sparse in the time
domain after the inverse Fourier transform. On the other hand,
we transmit the sparse matrix SSSΩ. Note that we cannot simply
perform SSSΩ = SSS ◦ΩΩΩ because SSS contains OFDM symbols in
the time domain, and direct multiplication with ΩΩΩ will lead
to inter-symbol interference (ISI). Consequently, our sparse
coding is conducted in the frequency domain according to (4).
It is worth noting that our proposed system can be also used in
multi-user transmission with modifications like arranging the
reference sequences of multiple users properly [14] or using
the Walsh code [29]. Specifically, for P users, the rank of
the transmit noise-free matrix is P , and hence rank-P matrix
completion is required at the receiver. The symbols from each
user can then be recovered due to the orthogonality of chaos
sequences or Walsh code.

After sparse coding, IFFT is performed on {pn,k} to gen-
erate {sΩ(i,k)}. At the end of the transmitter, the parallel data
streams are converted to serial format by the parallel-to-serial
(P/S) converter, and the cyclic prefix (CP) is added to avoid
the ISI and inter-carrier interference (ICI) due to frequency
selective fading.

B. Receiver Design

The structure of the proposed receiver with robust rank-1
matrix recovery is shown in Fig. 2. The received data first go
through CP removal and serial-to-parallel (S/P) conversion.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 16,2024 at 12:31:23 UTC from IEEE Xplore.  Restrictions apply. 



4842 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 8, AUGUST 2023

Fig. 2. Block diagram of SC-OFDM-DCSK receiver via rank-1 modeling
and ℓ0-norm minimization.

The incomplete matrix RRRΩ ∈ CN×β bearing the information
of the β OFDM symbols is then obtained at the buffer output,
which is expressed as:

RRRΩ = (HHHSSS + NNN) ◦ΩΩΩ = (HHHSSS)Ω + NNNΩ = SSSΩ + NNNΩ (5)

where HHH ∈ CN×N is a Toeplitz matrix constituted
by the multi-path impulse response in the time domain,
SSS = HHHSSS, and NNN ∈ CN×β contains additive dis-
turbances. The channel frequency response is derived as
Hn =

∑N−1
i=0 hi exp(−j2πni/N)/

√
N , where the multi-path

impulse response hi is equal to (a, (a− i) mod N) entry of
HHH , a = 1, · · · , N and mod denotes the remainder. As the
rank of SSS is equal to 1, its recovery, together with suppressing
the noise component NNN , can be achieved by means of low-rank
matrix recovery [41]. In this research, we consider the general
setting that NNNΩ contains gross errors or outliers. That is, NNNΩ

can be written as

NNNΩ = GGGΩ + OOOΩ (6)

where GGGΩ and OOOΩ represent the Gaussian background noise
and outlier components, respectively. Incorporating the rank-
1 matrix constraint with the use of the outer product represen-
tation, we propose the following formulation to find SSS:

min
uuu,vvv,OOOΩ

L(uuu,vvv,OOOΩ) := ∥RRRΩ − (uuuvvvH)Ω −OOOΩ∥2F + µ∥OOOΩ∥0
(7)

where uuu ∈ CN , vvv ∈ Cβ , and the ℓ0-norm is defined as the
number of non-zero elements of a matrix. Here, the Frobenius
norm is adopted to suppress the Gaussian background noise
GGGΩ while the ℓ0-norm aims to detect the outlier components in
OOOΩ, which is modeled as a sparse matrix. The parameter µ >
0 controls the sparsity level of OOOΩ, and ideally, OOOΩ will store
all gross errors. An adaptive rule for automatic determination
of µ will be provided shortly.

Before proceeding, we highlight the advantages of (7) over
the ℓp-norm minimization framework [35]:

min
uuu,vvv

∥(uuuvvvH)Ω −RRRΩ∥p
p, ∥RRR∥p =

(
N∑

i=1

β∑
k=1

|ri,k|p
)1/p

.

(8)

It is well known that the optimum value of p is 2 in the
presence of AWGN, while 0 < p < 2 is required to operate in
impulsive noise environments. Moreover, (8) applies ℓp-norm
minimization to all elements, which means that it treats all
matrix entries as Gaussian noise contaminated when p = 2 or
outliers when p < 2. Hence (8) is unable to attain optimality
when both small dense disturbances and gross errors appear.
On the other hand, (7) utilizes two terms in the objective
function to handle Gaussian background noise and outliers in
a separate and simultaneous manner. Furthermore, the compu-
tational complexity of performing ℓp-norm minimization can
be high for p ̸= 2 as iterations are required such as using the
iteratively reweighted least squares (IRLS), but there exists
fast algorithms for tackling sparsity formulated in ℓ0-norm.
These imply that (7) is superior to (8).

To handle (7), we adopt BCD to decompose it into three
subproblems with alternate and iterative updates:

uuul+1 = arg min
uuu
∥RRRΩ − (uuu(vvvl)H)Ω −OOOl

Ω∥2F (9)

vvvl+1 = arg min
vvv
∥RRRΩ − (uuul+1vvvH)Ω −OOOl

Ω∥2F (10)

OOOl+1
Ω = arg min

OOOΩ

(
∥RRRΩ − (uuul+1(vvvl+1)H)Ω −OOOΩ∥2F

+ µ(l+1)∥OOOΩ∥0
)

(11)

where l denotes the iteration number. Now µ is also considered
as an unknown parameter to be estimated adaptively, which
is replaced by µ(l+1). From (9)–(11), we see that BCD
alternatingly finds optimum solutions among uuul+1, vvvl+1 and
OOOl+1

Ω while the remaining variables are kept fixed. We first
present the solutions for (9)–(11) as follows. It is easily
observed that (9) can be decoupled in a row-by-row manner,
facilitating independent estimation of each of its elements.
Denote YYY Ω = RRRΩ − OOOl

Ω and let yyyH
Ωi

be the vector storing
the entries in the ith row of YYY Ω with indices in Ωi where Ωi

is the index set of 1 in the ith row of ΩΩΩ. Similarly, we define
vvvl

Ωi
as the vector consisting of elements in vvvl with indices in

Ωi. Then (9) is equivalent to:

ul+1
i = arg min

ui

∥yyyH
Ωi
− ui(vvvl

Ωi
)H∥22, i = 1, · · · , N

(12)

which is a simple scalar linear least squares (LLS) problem.
Analogously, considering column by column, each element of
vvvl+1 in (10) can be separately estimated from:

vl+1
j = arg min

vj

∥yyyΩj − uuul+1
Ωj

vj∥22, j = 1, · · · , β

(13)

where Ωj is the index set of 1 in the jth column of ΩΩΩ while
uuul+1

Ωj
and yyyΩj contain elements of uuul+1 and jth column of YYY Ω

with indices in Ωj , respectively. The LLS solutions to (12) and
(13) are given by:

ul+1
i =

yyyH
Ωi

vvvl
Ωi

(vvvl
Ωi

)Hvvvl
Ωi

, (14)

vl+1
j =

(uuul+1
Ωj

)HyyyΩj

(uuul+1
Ωj

)Huuul+1
Ωj

. (15)
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Defining EEEl+1
Ω = RRRΩ − (uuul+1(vvvl+1)H)Ω, (11) becomes:

OOOl+1
Ω = arg min

OOOΩ

∥EEEl+1
Ω −OOOΩ∥2F + µ(l+1)∥OOOΩ∥0. (16)

Vectorizing (16) yields:

oool+1 = arg min
ooo
∥eeel+1 − ooo∥22 + µ(l+1)∥ooo∥0 (17)

where eeel+1 and ooo are vectors containing elements of EEEl+1
Ω and

OOOΩ with indices in Ω in the column-first manner, respectively.
To facilitate real-valued processing, we decompose (17) into
real and imaginary parts, resulting in:

ōool+1 = arg min
ōoo
∥ēeel+1 − ōoo∥22 + µ(l+1)∥ōoo∥0 (18)

where

ēeel+1 =
[
ℜ{eeel+1}
ℑ{eeel+1}

]
, ōoo =

[
ℜ{ooo}
ℑ{ooo}

]
. (19)

Prior to solving (18, the value of µ(l+1), which determines the
sparsity of OOOl+1

Ω or the number of outliers at each iteration,
is required. One approach for outlier detection in ēeel+1 is to
use the Laplacian kernel [42]:

kσs(ē
l+1
i ) =

1
2σs

exp

(
−
∣∣ēl+1

i

∣∣
σs

)
(20)

where ēl+1
i is the ith element of ēeel+1 and σs is the bandwidth.

The principle is that the kernel operator (20) will return a
small value when ēl+1

i has a large magnitude. In kernel density
estimation, the bandwidth can be calculated by the Silverman’s
rule as [43]:

σs = 1.06×min
{

σe,
IQRe

1.34

}
× dim(ēeel+1)−0.2 (21)

where σe and IQRe are the standard derivation and interquar-
tile range of ēeel+1, respectively, and dim(·) denotes the vector
length. When kσs

(ēl+1
i ) ≤ ϵ where ϵ is a user-defined

threshold, then ēl+1
i is assigned as an outlier. Typically, ϵ

is set around 10−20. Defining Il+1 as the set of indices i
corresponding to outliers {ēl+1

i }, the non-negative parameter
µ(l+1) can be calculated as

µ(l+1) = min
{(

ēl+1
1

)2
, · · · ,

(
ēl+1
i

)2
, · · · ,

(
ēl+1
|Il+1|

)2

, µ(l)

}
(22)

where |Il+1| is the cardinality of Il+1.
With µ(l+1), according to [44], (17) has a closed-form and

global solution, which is:

ōl+1
i = Hµ(l+1)(ēl+1

i ) =

{
ēl+1
i , if |ēl+1

i | ≥
√

µ(l+1)

0, otherwise
(23)

where ōl+1
i is the ith element of ōool+1 and Hµ(l+1)(·) is the

hard-thresholding operator which sets the values below µ(l+1)

to 0. After all element-wise operations, the obtained ōool+1 is
reconstructed back to the complex-valued vector oool+1, and
subsequently OOOl+1

Ω according to ΩΩΩ. The overall procedure is
summarized in Algorithm 1.

Algorithm 1 Rank-1 Matrix Recovery With ℓ0-Norm Mini-
mization
Input: RRRΩ, ΩΩΩ, ϵ = 10−20

Initialize: Randomly initialize uuu0 and vvv0, µ(0) = ∞.
for l = 0, 1, . . . do

for n = 0, 1, . . . , N − 1 do
Update ul+1

i based on (14).
end for
for k = 0, 1, . . . , β − 1 do

Update vl+1
j based on (15).

end for
Compute EEEl+1

Ω = RRRΩ − (uuul+1(vvvl+1)H)Ω.
Transform EEEl+1

Ω to ēeel+1.
Compute σs based on (21).
Compute kσs(ēee

l+1) based on (20).
Construct Il+1 which contains all indices i satisfying
kσs

(ēeel+1) ≤ ϵ.
Compute µ(l+1) based on (22).
Compute ōool+1 = Hµ(l+1)(ēeel+1) based on (23).
Construct OOOl+1

Ω with ōool+1 and ΩΩΩ.
Stop when termination condition is met.

end for
Output: R̂RR = uuul+1(vvvl+1)H

After rank-1 matrix recovery, FFT is performed on R̂RR
for OFDM demodulation, followed by the frequency domain
equalizer (FDE) [45] to yield the rank-1 matrix CCC [33]:

CCC = [ccc0, ccc1, . . . , cccn, . . . , cccN−1]H (24)

That is, every row vector of CCC represents a chaotic sequence,
with the first one, ccc0, being the reference sequence while the
rest are information-bearing sequences. Utilizing the real part
of CCC, the detected BPSK symbol ŝn is determined via chaotic
demodulation as:

ŝn = sgn
(
ℜ{cccT

0 } · ℜ{cccn}
)
, 1 ≤ n ≤ N − 1 (25)

where sgn(·) is the sign function. Finally, the information bits
are straightforwardly decoded from the BPSK symbols.

III. THEORETICAL ANALYSIS

A. Convergence

We add superscripts µ(l) and µ(l+1) in the objective function
of (7) to denote its values at the lth and (l + 1)th iterations,
respectively. The objective function difference in two adjacent
iterations can then be written as:

Lµ(l+1)(uuul+1, vvvl+1,OOOl+1
Ω )− Lµ(l)(uuul, vvvl,OOOl

Ω)

= Lµ(l)(uuul+1, vvvl,OOOl
Ω)− Lµ(l)(uuul, vvvl,OOOl

Ω)︸ ︷︷ ︸
L1

+ Lµ(l)(uuul+1, vvvl+1,OOOl
Ω)− Lµ(l)(uuul+1, vvvl,OOOl

Ω)︸ ︷︷ ︸
L2

+ Lµ(l+1)(uuul+1, vvvl+1,OOOl
Ω)−Lµ(l)(uuul+1, vvvl+1,OOOl

Ω)︸ ︷︷ ︸
L3
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+ Lµ(l+1)(uuul+1, vvvl+1,OOOl+1
Ω )−Lµ(l+1)(uuul+1, vvvl+1,OOOl

Ω)︸ ︷︷ ︸
L4

(26)

where L1, L2, L3 and L4 refer to the objective function dif-
ferences after computing (9), (10), (22) and (11), respectively.
Since uuul+1, vvvl+1, and OOOl+1

Ω are the optimal solutions of (9),
(10), and (11), respectively, as well as (22) indicates µ(l+1) ≤
µ(l), all L1, L2, L3 and L4 are not greater than 0, implying
that L(uuu,vvv,OOOΩ) is non-increasing. Moreover, the non-convex
function L(uuu,vvv,OOOΩ) is upper bounded by L(uuu0, vvv0,OOO0

Ω) and
lower bounded by 0, thus Algorithm 1 makes the objective
function value converge.

B. Bit Error Rate

We first derive the BER in AWGN over frequency selective
fading channel. Subsequently, as a special case, the BERs
over flat fading and no fading channel are derived. Moreover,
we provide the BER in Middleton class A noise. In the BER
analysis, we assume that perfect channel state information
is obtained and used in FDE. We also assume that the SC-
OFDM-DCSK symbol duration is smaller than the channel
coherent time, which means that the slow fading remains con-
stant in SC-OFDM-DCSK symbol duration, and the Doppler
spread and the Doppler-induced ICI are ignored.

1) BER in AWGN Over Frequency Selective Fading Chan-
nel: According to Fig. 2, BPSK demodulation is processed
after equalization in the frequency domain. We write the
matrix used for BPSK demodulation as ℜ{CCC} ≈ ũuuṽvvT where
ũuu = [ũ0, ũ1, . . . , ũn, . . . , ũN−1]T ∈ RN and ṽvv ∈ Rβ . Because
of BPSK modulation, only the signs of the demodulated sym-
bols affect the demodulation results. Based on [33], we have
ŝn = sgn (ũ0) · sgn (ũn) and the error probability of each
element in ũuu can be expressed as:

Pbn
= Q

(
dxxxnṽvv

σg

)
= Q

(
|Hn| cos θ

√
β/2
N0/2

)

= Q

(
|Hn| cos θ

√
β

N0

)
. (27)

where N0 = 2σ2
g with σ2

g being the AWGN variance,
Q(x) =

∫∞
x

exp(−t2/2)dt is the Q-function, θ is the
numerically-determined angle between the transmitted chaotic
sequence vector xxxn and ṽvv, xxxn = |Hn|xxx and the length of the
projection of xxxn onto ṽvv is:

dxxxnṽvv = |Hn|dxxx cos θ = |Hn|
√

βE{x2
k} cos θ

= |Hn|
√

β

2

∣∣∣∣∣ ṽvvTxxx

∥ṽvv∥2∥xxx∥2

∣∣∣∣∣ (28)

where cos θ = ṽvvTxxx/(∥ṽvv∥2∥xxx∥2). Subsequently, since chaos
demodulation is non-coherent, the BER of one BPSK symbol
is calculated based on the product of ũ0 and ũn. Noting
that even when both values have incorrect polarities, the
resultant BPSK symbol is still correctly demodulated, while
error appears only when one of ũ0 and ũn has wrong sign.

Therefore, the error rate of BPSK symbol under certain θ and
{H0, · · · , HN−1} can be expressed as

Pe =
1

N − 1

N−1∑
n=1

[Pb0(1− Pbn
) + (1− Pb0)Pbn

] . (29)

Finally, the BER in AWGN over frequency selective fading
channel is numerically calculated by taking the expected
value of Pe under the admissible range of θ [46], [47] and
{H0, · · · , HN−1}, which can be expressed as:

BERFSF =E {Pe|θ; H0, · · · , HN−1}

= E

{
N−1∑
n=1

Q

(
|H0| cos θ

√
β

N0

)(
1−Q

(
|Hn| cos θ

√
β

N0

))

+

(
1−Q

(
|H0| cos θ

√
β

N0

))
Q

(
|Hn| cos θ

√
β

N0

)
∣∣∣∣θ; H0, · · · , HN−1

}
. (30)

When the frequency selective fading is originated from
the complex Gaussian distributed multi-path fading with unit
power spectral density [17], |Hn| is independent and iden-
tically Rayleigh distributed with the scale parameter σr =√

2/2. Therefore, assuming that the number of received sam-
ples is large, the BER over multi-path fading channel is
calculated by a multi-variable integral of |H0|, · · · , |HN−1|
as [11]:

BERMPF

=
∫ ∞

0

· · ·
∫ ∞

0

E {Pe|θ}
N−1∏
n=0

f(|Hn|)d|H0|, · · · , d|HN−1|

(31)

where f(|Hn|) is the probability density function (PDF)
of |Hn| over multi-path fading channel, denoted as
fMPF(|Hn|) = 2|Hn| exp(−|Hn|2). To compute the BER
values, the Monte Carlo simulation with T independent trials
and N subcarriers is applied. In the simulation, T×(N−1) >
105 bits are generated, indicating that the precision of the
empirical BER can achieve 10−5.

2) BER in AWGN Over Flat Fading Channel: Since in
flat fading channel, the frequency responses over multiple
subcarriers remain constant, we have |H0| = |H1| = · · · =
|HN−1| = |H|. Therefore (27) is rewritten as:

Pb = Q

(
|H| cos θ

√
β

N0

)
. (32)

While (29) is:

P̄e = 2Pb(1− Pb). (33)

Subsequently, similar to (31), the BER in AWGN over flat
fading channel is derived as:

BERflat =
∫ ∞

0

E
{
P̄e|θ

}
f(|H|)d|H|

=
∫ ∞

0

E

{
2Q

(
|H| cos θ

√
β

N0

)(
1−Q

(
|H| cos θ

√
β

N0

))∣∣∣∣θ
}
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2|H| exp(−|H|2)d|H|
(34)

where the PDF of |H| can be also modeled by a Rayleigh
distribution with scale parameter σr =

√
2/2, denoted as

f(|H|) = 2|H| exp(−|H|2).
3) BER in AWGN Without Fading: When there is no fading,

we have H = 1. Therefore, according to (34), the BER in
AWGN is:

BERAWGN = E
{
P̄e|θ

}
= E

{
2Q

(
cos θ

√
β

N0

)(
1−Q

(
cos θ

√
β

N0

))∣∣∣∣θ
}

.

(35)

4) BER Lower Bound in Middleton Class A Noise:
We use the Middleton class A model to depict the impul-
sive noise. Middleton class A noise is originated from the
widespread electromagnetic interference in telecommunication
systems [48]. The PDF of the Middleton class A noise is
expressed as:

p(ξ) = exp(−A)
∞∑

m=0

Am

m!
√

2πσ2
m

e
− ξ2

2σ2
m (36)

where A is the impulsive index and Γ denotes the ratio of
Gaussian noise power to impulsive noise power [22], while
the variance of the mth Gaussian component is

σ2
m = σ2

g

m
A + Γ
1 + Γ

. (37)

We set A and Γ as A = Γ = 0.01. To generate the complex-
valued version, the zero-mean real and imaginary parts are
independently realized using (36) with the same power.

In (36), when m becomes larger, the variance of the
mth Gaussian component becomes larger, and the probability
becomes smaller. Outlier resistance aims at suppressing the
noise from Gaussian components with large m. Since the
variance of the mth Gaussian component obeys (37), we obtain
σ2

m ≫ σ2
0 when m > 0, A = 0.01 and Γ = 0.01, which

means that the noise from Gaussian components with m ≥ 1 is
considered as outlier. Therefore, for the best outlier resistance
performance, the Gaussian components with m > 0 are
suppressed, and only the Gaussian component with m = 0 is
left. For the BER calculation with the best outlier resistance,
we use σ0 to replace σg . According to (37), we know that
σ2

0 = σ2
gΓ/(1 + Γ) = Γ

√
N0/2/(1 + Γ), and hence the BER

lower bound in Middleton class A noise can be derived without
fading according to (35):

BERMCA,ideal = E

{
2Q

(
(1 + Γ) cos θ

Γ

√
β

N0

)
(

1−Q

(
(1 + Γ) cos θ

Γ

√
β

N0

))∣∣∣∣θ
}

.

(38)

For cases of Middleton class A noise plus fading channels,
the lower bound can be derived by replacing σ2

g = N0/2 to
σ2

0 in (30), (31) and (34).

TABLE I
ENERGY EFFICIENCY COMPARISON

C. Energy Efficiency

Without loss of generality, we assume that the chips in
chaotic sequences are transmitted in unit time, and the energy
cost of CP is ignored [11]. In the SC-OFDM-DCSK system,
each entry of ΩΩΩ is an independent Bernoulli variable with
R as the probability of being 0. That is, R refers to the
percentage of missing data. Therefore, we can adjust the
energy cost by adjusting R. According to the Parseval’s
theorem, the energy cost of one SC-OFDM-DCSK symbol is
Esc = NβE{x2

k}(1−R). Moreover, as one SC-OFDM-DCSK
symbol carries N−1 bits, hence the average energy distributed
per bit is Eb = NβE{x2

k}(1−R)/(N − 1). Since the energy
cost is on sequence-by-sequence basis in chaotic systems using
chaotic sequences, the energy efficiency can be measured by
the reference-to-bit-energy ratio (RBR) [11], denoted as RBR
= Eref/Eb = (N − 1)/(N(1 − R)) where the energy of the
reference chaotic sequence is Eref = βE{x2

k}.
Table I shows the comparison of energy efficiency between

the proposed system and other binary DCSK systems, where
M and λ are parameters in [40]. We see that if R is set
as a large value, the energy efficiency of our system can be
significantly larger than that of other competing systems.

D. Computational Complexity

For (9) and (10), it is clear from (14) and (15) that
calculating ul+1

i has the complexity of O(|Ωi|), and that of
vl+1

j is O|Ωj |. Therefore, updates of both uuul+1 and vvvl+1 are
of O(|Ω|) because

∑N−1
i=0 |Ωi| =

∑β−1
j=0 |Ωj | = |Ω|. As linear

computation is performed on all elements with indices in Ω
in updating (11), its complexity is also O(|Ω|). It is worth
pointing out that even without sparse coding or |Ω| = Nβ,
the complexity becomes O(Nβ), which is smaller than that
of [33], namely, O(NβNIRLS) where NIRLS is the number
of iterations required in the IRLS. Moreover, the complexity
of directly performing truncated singular value decomposition,
corresponding to [33] at p = 2, is O(Nβ), which is equal to
that of the proposed method.

IV. SIMULATION RESULTS

Computer simulations have been carried out to evaluate
the properties and performance of the proposed SC-OFDM-
DCSK system. Second-order CPF is used for chaotic sequence
generation. The number of subcarriers is N = 128, and the
length of chaotic sequence is β = 50.
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Fig. 3. Objective function value versus iteration number.

A. Convergence of Objective Function Value

Figure 3 plots the objective function value in (7) versus
number of iterations for a single trial in the presence of AWGN
and Middleton class A noise at Eb/N0 = 10 dB. Furthermore,
no sparse coding is applied, that is, R = 0. We see that
the analysis in Section III-A is validated, and the objective
function converges very fast, namely, at the third iteration.
Moreover, the objective function value over Middleton class A
noise channel is smaller than the objective function value over
AWGN channel. This is because in impulsive noise channels,
most noise power is allocated to outliers. When Eb/N0 is
fixed, outlier suppression means significant reduction of the
power of impulsive noise. However, since no outliers are
in AWGN channel, noise suppression effect is not obvious.
Therefore, if the outliers from impulsive noise channels are
suppressed properly, the power of remaining errors is smaller
than AWGN power, which makes objective function value
smaller.

B. Steady-State Error

We utilize the normalized root square error (NRSE) to
determine the convergence of the algorithm, which is defined
as:

NRSE =
∥R̂RR−SSS∥F

∥SSS∥F
(39)

Apparently, the NRSE measures the difference between the
estimated rank-1 matrix R̂RR and SSS in the time domain, where
it is assumed that the channel response matrix is HHH = III
for simplicity. Lower NRSE leads to more effective low-rank
matrix recovery and better BER performance for low-rank
matrix approximation based OFDM-DCSK systems. In our
study, Algorithm 1 is terminated when the NRSE difference
between two successive iterations is smaller than δ = 10−4.
Employing a PC with Intel i7-9700 3.00GHz CPU, the con-
vergence time of Algorithm 1 varies between 0.03s and 0.16s
for various Eb/N0 and input symbol values, outperforming
the ℓp-norm method [33] formulated in (8) for p < 2, which
needs 0.2s to 0.6s to converge.

Fig. 4. MNRSE versus missing percentage in AWGN.

The steady-state mean value of the NRSE, denoted by
MNRSE = E{NRSE}, is examined for different values of R
and Eb/N0 based on the average of 1000 independent runs.
We evaluate the proposed system with [33] at p = 1 and
p = 2, and comparison with sparse coding aided OFDM-
DCSK [13] is also conducted. Fig. 4 plots the MNRSE versus
missing percentage R ∈ [0, 0.5] in AWGN at Eb/N0 = 10 dB.
It is observed that the proposed scheme and ℓ2-norm method
have similar MNRSE values for the whole range of R, and
are much smaller than ℓ1-norm method and [13]. As ℓ2-norm
minimization corresponds to the optimum estimator in AWGN,
indicating that Algorithm 1 is able to yield the best rank-1
matrix recovery. This also implies that (7) is approximately
reduced to (8) at p = 2, and only a few or even no entries have
been identified as outliers. On the other hand, the MNRSE
performance versus Eb/N0 ∈ [−20, 15] dB is plotted in Fig. 5
for R = 0, 0.2 and 0.4. We see that the results align with those
of Fig. 4. That is, both the proposed system and [33] with
p = 2 perform comparably, and are superior to the ℓ1-norm
method and [13]. In addition, the proposed system and [33] are
insensitive to missing data even when R ≤ 0.4, while [13] has
sightly smaller MNRSE when R is larger. This is because the
sparse coding reduces the signal energy, and the noise power is
also reduced when Eb/N0 is fixed. Although [13] has smaller
MNRSE when R is larger, the value is still higher than other
systems with low-rank approximation.

We replace the AWGN by an impulsive process, namely,
Middleton class A noise [48], to evaluate the outlier suppres-
sion performance via repeating the above tests. The results
are plotted in Figs. 6 and 7, while the Eb/N0 in Fig. 6
is 10 dB. As [13] does not perform the low-rank matrix
approximation, and p = 2 is not robust to outliers, [13] and the
ℓ2-norm minimization method have very large MNRSEs for
different values of R and Eb/N0. Moreover, we see that the
proposed system produces the minimum MNRSE in all these
settings, and outperforms the ℓ1-norm scheme. This means
that the formulation in (7) which simultaneously handles
both Gaussian background noise and impulsive components
is more effective than (8) because the ℓ1-norm treats all
entries as outlier-contaminated terms, particularly in more
noisy conditions. From Figs. 4 to 7, the advantage of automatic
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Fig. 5. MNRSE versus Eb/N0 in AWGN.

Fig. 6. MNRSE versus missing percentage in Middleton class A noise.

Fig. 7. MNRSE versus Eb/N0 in Middleton class A noise.

parameter adjustment to achieve the best performance of (7)
in different noise models over the ℓp-norm approach with a
fixed value of p is also demonstrated.

C. Bit Error Rate

Finally, the BER performance of the proposed system is
evaluated by comparing with [33]. For each value of Eb/N0,
3938 independent trials, corresponding to 3938× (N − 1) =

Fig. 8. BER versus Eb/N0 in AWGN at R = 0.

Fig. 9. BER versus Eb/N0 in AWGN over flat fading channel at R = 0.

500126 bits, are performed. To show the results over fading
channels, the average power of flat fading is 1, and the
multi-path fading has three paths with average path power
1/3 and [0, 2, 4] delayed symbols for each path. Moreover,
we assume that perfect channel estimation information is
obtained for frequency equalization [45] at the receiver.

Figures 8-11 plot the BER in AWGN versus Eb/N0 for the
proposed scheme, [33] at p = 1 and p = 2, and [13]. The
Eb/N0 range in Figs. 8 and 11 is set as [−20, 15] dB, while
Figs. 9 and 10 extend the range of Eb/N0 to [−20, 50] dB.
The theoretical BERs in AWGN, given by (35), which even
holds for incomplete data but with accurate matrix recovery,
are also included. It is observed that the proposed system
and the optimum ℓ2-norm method produce similar BERs and
are superior to the ℓ1-norm scheme and [13], while (35) is
validated. Figs. 9 and 10 show that similar results are obtained
over flat fading channel and multi-path fading channel. The
theoretical BERs in (34) and (31) are also validated. Moreover,
we see from Fig. 11 that losing 20% of the transmitted symbols
basically will not degrade the BER performance, which aligns
with the findings in Figs. 4 and 5.
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Fig. 10. BER versus Eb/N0 in AWGN over multi-path fading channel at
R = 0.

Fig. 11. BER versus Eb/N0 in AWGN at R = 0.2.

Fig. 12. BER versus Eb/N0 in Middleton class A noise at R = 0.

The above tests are repeated for the Middleton class A
noise, and the results are shown in Figs. 12-15. As the
ℓ2-norm method and [13] seriously deteriorate in impulsive
noise environments, their results are not included. To calculate
the lower bound in Figs. 13 and 14, cos θ in (38) should be
first calculated according to (28) with the transmitted chaos
sequence xxx and estimated chaos sequence ṽvv. Subsequently,

Fig. 13. BER versus Eb/N0 in Middleton class A noise over flat fading
channel at R = 0.

Fig. 14. BER versus Eb/N0 in Middleton class A noise over multi-path
fading channel at R = 0.

Fig. 15. BER versus Eb/N0 in Middleton class A noise at R = 0.2.

the conditional BER of a specific θ is calculated by the
equation inside the expectation in (38). Finally, the value
of (38) is calculated by taking the expectation of different
conditional BERs with different θ. We clearly see that the BER
superiority of the proposed system over the ℓ1-norm scheme in
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the absence and presence of missing transmitted data, and the
BER of the proposed system matches the BER lower bound in
(38) well, which means that the outliers are suppressed well.
Moreover, in Figs. 13 and 14, the proposed system has better
BER performance than the ℓ1-norm scheme in Middleton class
A noise over flat fading channel and multi-path fading channel,
respectively. Furthermore, their BER performance basically
remains unchanged at R = 0.2. These findings also agree
with Figs. 6 and 7.

V. CONCLUSION

A robust and energy efficient SC-OFDM-DCSK system
is devised to tackle possibly outlier-contaminated received
symbols and enhance energy efficiency. By making use of
the rank-1 property of the noise-free OFDM-DCSK symbol
matrix, the outer product representation is adopted as its
model, whose estimation is formulated in a least squares
setting, together with an ℓ0-norm term for outlier detection.
In doing so, both Gaussian background noise and impulsive
components can be handled simultaneously by matrix recov-
ery. Due to the rank-1 redundancy, we also suggest sparse
coding to reduce the transmission energy, and the original
signal can be recovered from the sparse-coded signal. BCD
is utilized as the fast solver with automatic parameter control
and the Laplacian kernel for identifying the outliers. Compared
with the ℓp-norm minimization based rank-1 matrix recovery
approach [33] in the AWGN environments, our solution is
comparable to that of p = 2 which is the optimum estimator,
and the derived BER is validated even when the missing
symbol ratio is up to 20%. In the presence of Middleton
class A noise, the proposed system outperforms [33] with
p = 1 in both computational complexity and BER, which
are also theoretically justified. Furthermore, our scheme can
achieve higher energy efficiency than competing binary DCSK
based systems.
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