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Robust Low-Rank Tensor Completion Based on
Tensor Ring Rank via �p,ε-Norm
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Abstract—Tensor completion aims to recover missing entries
given incomplete multi-dimensional data by making use of the
prior low-rank information, and has various applications because
many real-world data can be modeled as low-rank tensors. Most of
the existing methods are designed for noiseless or Gaussian noise
scenarios, and thus they are not robust to outliers. One popular ap-
proach to resist outliers is to employ �p-norm. Yet nonsmoothness
and nonconvexity of �p-norm with 0 < p ≤ 1 bring challenges
to optimization. In this paper, a new norm, named �p,ε-norm,
is devised where ε > 0 can adjust the convexity of �p,ε-norm.
Compared with �p-norm, �p,ε-norm is smooth and convex even
for 0 < p ≤ 1, which converts an intractable nonsmooth and
nonconvex optimization problem into a much simpler convex and
smooth one. Then, combining tensor ring rank and �p,ε-norm, a
robust tensor completion formulation is proposed, which achieves
outstanding robustness. The resultant robust tensor completion
problem is decomposed into a number of robust linear regression
(RLR) subproblems, and two algorithms are devised to tackle RLR.
The first method adopts gradient descent, which has a low com-
putational complexity. While the second one employs alternating
direction method of multipliers to yield a fast convergence rate.
Numerical simulations show that the two proposed methods have
better performance than those based on the �p-norm in RLR.
Experimental results from applications of image inpainting, video
restoration and target estimation demonstrate that our robust
tensor completion approach outperforms state-of-the-art methods
in terms of recovery accuracy.

Index Terms—Tensor completion, tensor ring rank, linear
regression, outlier, robust recovery, gradient descent, alternating
direction method of multipliers.

I. INTRODUCTION

M ISSING value recovery from incomplete data has been
a significant research topic, which includes reconstruct-

ing one-dimensional, two-dimensional and multi-dimensional
data. For one-dimensional data, it refers to compressed sensing
which utilizes sparsity to recover a sparse vector from a few
measured entries [1], [2]. From vectors to matrices, it becomes
matrix recovery problem which aims to restore a matrix from an
incomplete matrix with low-rank characteristic [3], [4]. While
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tensor completion refers to recovering a low-rank tensor from an
incomplete tensor. It is considered to be a powerful technique
to process multi-dimensional data, such as color images and
videos, as it can excavate more latent correlations. For example,
compared with matrix completion in processing a gray-scale
image [5], tensor completion can use RGB channel information
to obtain a better recovered image. Hence, tensor completion has
become the core problem in many applications, including visual
data recovery [6], [7], multiple-input multiple-output (MIMO)
radar [8], [9] and machine learning [10], [11].

Unlike matrix rank which has a unique definition, the tensor
rank has several definitions, namely n-rank [12], CANDE-
COMP/PARAFAC (CP) rank [13], [14], Tucker rank [15], tensor
tubal rank [16], tensor train (TT) rank [17] and tensor ring (TR)
rank [18]. The performance of many existing tensor completion
methods is, to a large extent, affected by their own adopted
tensor ranks. For tensor completion methods based onn-rank, an
nth-order tensor is unfolded into n matrices in n ways and then
the sum of the ranks of these n matrices is minimized [19], [20].
Since this approach just unfolds a tensor into matrices without
excavating the tensor structure, an accurate solution may not be
attained [21]. CP rank can make use of the tensor structure, which
aims to find a linear combination of rank-one tensors [22], [23].
Yet it cannot directly process color image data and video data in
which one dimension is much smaller than the other dimensions.
Because the low-rank attribute cannot be satisfied in the mini-
mum dimension, the performance will degrade when recovering
color images and videos. Otherwise, it may not find a reasonable
result since the best low-rank approximation based on CP rank
is ill-posed [24]. Tucker rank is defined as a set of all ranks
of the matrices factorized by Tucker decomposition [25], [26],
but it is not applicable for high-dimensional tensors because its
storage memory grows exponentially with the data dimension.
Tensor tubal rank is closest to matrix rank, which is calculated
from the diagonal tensor factorized by tensor singular value
decomposition [27]. It has been shown that tensor tubal rank
is more suitable than Tucker rank [28]–[30] for low-rank tensor
completion. TT rank utilizes two matrices and a few 3rd-order
tensors to represent the target tensor. It has been reported that TT
rank can exploit more correlations and obtain better performance
than CP rank and Tucker rank in tensor completion [31], [32].
Nevertheless, TT rank requires that factors on both sides are
matrices, which results in large intermediate factors and small
boundary factors. This problem is solved by TR rank in which
two boundary factors can be 3rd-order tensors. Moreover, it has
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been shown that the TR rank outperforms the TT rank in tensor
completion [34].

On the other hand, conventional tensor completion methods
employ Frobenius norm, indicating that they are designed for
the Gaussian noise and noise-free scene. Data, in practice,
may contain outliers, including impulsive noise in commu-
nication channels and salt-and-pepper noise in images [35],
[36]. Because �2-space optimization, which is derived based
on Gaussian noise assumption, is unable to resist outliers,
the performance of these methods will be degraded when the
observed entries are corrupted by outliers. To resist outliers,
�p-norm with 0 < p < 2 has been adopted, such as �p-parallel
factor analysis (�p-PARAFAC) [37] and iteratively reweighted
tensor singular value decomposition (IR-t-SVD) [38]. Since
�p-PARAFAC employs CP rank, its performance is affected by
the tensor model. It is worth noting that the noise in IR-t-SVD
must obey the random tubal distribution which means that noise
in different frontal slices has the same coordinate. Moreover,
�p-norm is nonsmooth and nonconvex with 0 < p ≤ 1, leading
to complicated optimization and possibly local solutions.

In this paper, �p,ε-norm is devised to replace �p-norm for
resisting outliers. Then we employ TR rank and �p,ε-norm to
reformulate the robust tensor completion problem. The reason
for adopting TR rank is that it has better stability and adaptabil-
ity than other tensor ranks. Besides, block coordinate descent
(BCD) is applied to solve the resultant multi-variable optimiza-
tion problem in which one tensor variable is updated at each
iteration while the remaining variables are fixed. In addition,
two algorithms are developed for solving RLR. The first one
utilizes gradient descent (GD) to yield a low computational
complexity. While the second one uses alternating direction
method of multipliers (ADMM), which has a fast convergence
rate. Yet only the ADMM-based method is adopted to tackle
robust tensor completion since the appropriate value of the
step-size of the GD-based approach is difficult to obtain. Our
main contributions are summarized as:

1) We devise �p,ε-norm to achieve robustness. Compared
with �p-norm, �p,ε-norm is smooth and convex with 0 <
p ≤ 1.

2) The convexity of �p,ε-norm with 0 < p < 1 is proved.
Moreover, we clearly describe how to determine ε which
gives convex �p,ε-norm. We also analyze that �p,ε-norm
has better performance in resisting outliers than �p-norm
with 0 < p ≤ 1.

3) Based on �p,ε-norm, we employ TR rank for robust tensor
completion. The proposed approach exhibits better perfor-
mance than existing methods in processing different data
including color image, color video, and MIMO radar data
in the presence of outliers.

The remainder of this paper is organized as follows. In Sec-
tion II, notations and preliminaries are provided, and the TR
decomposition is reviewed. The �p,ε-norm is derived, and its
associated properties are analyzed in Section III. In Section IV,
the robust tensor completion problem based on TR rank and �p,ε-
norm is formulated, and then we decompose the problem into a
number of �p,ε-norm-based RLR subproblems. Two algorithms,
namely, GD-�p,ε-norm and ADMM-�p,ε-norm, are developed in

Section V. In Section VI, we first compare the two proposed
algorithms with existing methods based on �p-norm to deal
with RLR. Moreover, numerical examples based on real-world
and synthetic data including color image, video and MIMO
radar data demonstrate that our robust tensor completion method
outperforms the state-of-the-art approaches. Finally, concluding
remarks are included in Section VII.

II. NOTATIONS AND PRELIMINARIES

In this section, notations, basic definitions and TR decompo-
sition are reviewed.

A. Notations

Scalars, vectors, matrices and tensors are represented by
italic, bold lower-case, bold upper-case and bold calligraphic
letters, respectively. For instance, AAA ∈ RI1×I2×···×In denotes
an nth-order tensor and its (i1, i2, . . . , in) entry is denoted
as AAA(i1, i2, . . . , in). The � represents the Hadamard product
operation. Pseudo-inverse operator, transpose operator and con-
jugate transpose operator are denoted by (·)†, (·)T and (·)H ,

respectively. Besides, ‖AAA‖F =
√∑m

i=1

∑n
j=1 a

2
ij is the Frobe-

nius norm of AAA ∈ Rm×n where aij is the (i, j) entry of AAA. The
trace of AAA ∈ Rn×n is represented by tr(AAA) =

∑n
i=1 aii. For

vectors, matrices and tensors, ‖ · ‖pp with 0 < p < 2 corresponds
to the �p-norm which is calculated by the sum of p power of
all elements. Moreover, ‖ · ‖2, ‖ · ‖0 and dim(·) stand for the
�2-norm, �0-norm and dimension of a vector, respectively. Given
aaa and bbb,aaa ◦ bbb denotes the outer product, and 〈aaa,bbb〉 represents the
inner product. The vectorization of AAA is described by vec(AAA),
while res(·) is the reshape operator which returns an array of
specified dimensions with the same entries as the input data. For
a 3rd-order tensor,AAA(:, i2, i3),AAA(i1, :, i3) andAAA(i1, i2, :) repre-
sent horizontal fiber, vertical fiber and depth fiber, respectively.
In addition, its horizontal slice, lateral slice and frontal slice are
denoted as AAA(i1, :, :), AAA(:, i2, :) and AAA(:, :, i3), respectively.

B. Basic Operations

Definition 1 (Mode-i unfolding [39]): Mode-i unfolding ofAAA
is denoted asAAA[i], which converts an nth-orderAAA into a matrix:

AAA[i] ∈ RIi×(I1···Ii−1Ii+1···In). (1)

Definition 2 (Left unfolding and right unfolding [40]): For
AAA ∈ RI1×I2×I3 , left unfolding is denoted as:

L(AAA) = (AAA[3])
T ∈ R(I1I2)×I3 . (2)

Similar to left unfolding, right unfolding is:

R(AAA) =AAA[1] ∈ RI1×(I2I3). (3)

Definition 3 (Tensor connect product [34]): Given AAA ∈
RR0×I1×R1 and BBB ∈ RR1×I2×R2 , then the tensor connect prod-
uct between these two tensors is defined as:

AAABBB = res(L(AAA)×R(BBB)) ∈ RR0×(I1I2)×R2 . (4)

Tensor connect product which is similar to matrix product
provides the product rule for two 3rd-order tensors. Note that

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 30,2023 at 07:47:38 UTC from IEEE Xplore.  Restrictions apply. 



LI AND SO: ROBUST LOW-RANK TENSOR COMPLETION BASED ON TENSOR RING RANK 3687

Fig. 1. TR decomposition [18].

the last dimension of the former tensor must be equal to the first
dimension of the latter.

Definition 4 (Tensor permutation [18]): For AAA ∈
RI1×I2×···×In , the ith tensor permutation is denoted as:

AAApi ∈ RIi×Ii+1×···×In×I1×I2×···Ii−1 . (5)

The relationship between AAApi and AAA obeys:

AAApi(ii, . . . , in, i1, · · · ii−1) =AAA(i1, i2, . . . , in). (6)

Definition 5 (Inverse operator of TR decomposition [34]):
Given AAA ∈ RR0×(I1I2···In)×R0 , the inverse operator, denoted as
U , is to organize AAA as an nth-order tensor:

BBB = U(AAA) ∈ RI1×I2×···×In (7)

where the entry of BBB is calculated by

BBB(i1, i2, . . . , in)
= tr(AAA(:, i1 + (i2 − 1)I1 + · · ·+ (in − 1)In−1, :)). (8)

Lemma 1: Given BBB = U(AAA1 · · ·AAAn), then

BBBpi = U(AAAiAAAi+1 · · ·AAAnAAA1 · · ·AAAi−1). (9)

C. TR Decomposition

TR decomposition represents an nth-order tensor AAA ∈
RI1×I2×···×In by using multiple 3rd-order tensors:

AAA =

r1,...,rn∑
α1,...,αn=1

BBB1(α1, :, α2) ◦ BBB2(α2, :, α3) ◦ · · ·

◦ BBBn(αn, :, α1) (10)

whereBBBi ∈ Rri×Ii×ri+1 ,BBBi(αi, :, αi+1) is the vertical fiber and
rrr = [r1, . . . , rn] is called TR rank. It is indicated in (10) that AAA
can be represented by a sum of rank-one tensors. The entry of
AAA is computed as:

AAA(i1, . . . , in) = tr

(
n∏

k=1

BBBk(:, ik, :)

)
(11)

where BBBk(:, ik, :) denotes the ikth lateral slice with dimensions
rk × rk+1. It is worth noting that rn+1 = r1. Fig. 1 depicts the
TR decomposition of an nth-order tensor. The circle represents
a tensor, and the tensor dimension is denoted by the number
of edges. The line connecting two circles stands for the tensor
connect product. The factorization format looks like a ring,
giving rise to the name of TR decomposition.

Note that all ri with i ∈ [1, n] can be different in the standard
TR decomposition. In our work, r1 = r2 = · · · = rn = R so the
TR rank is R.

III. �p,ε-NORM

In this section, �p,ε-norm is proposed, then its basic proper-
ties are introduced and analyzed. Subsequently, the difference
between �p,ε-norm and �p-norm is illustrated.

A. Definition and Properties of �p,ε-Norm

Definition 6: Given xxx = [x1, x2, . . . , xn]
T ∈ Rn, the �p,ε-

norm of xxx with 0 < p < 2 is defined as:

‖xxx‖pp,ε =
n∑

i=1

[
(x2

i + ε2)p/2 − εp
]

(12)

where ε enables �p,ε-norm to be convex for 0 < p < 1. For 0 <
p ≤ 1, ε > 0. Otherwise, ε = 0.

Lemma 2: The �p,ε-norm has following properties:

(i) Given x1 and x2, if |x1|p ≤ |x2|p, then
(
x2
1 + ε2

)p/2 −
εp ≤ (x2

2 + ε2
)p/2 − εp.

(ii) For 1 < p < 2, �p,ε-norm equals �p-norm.
(iii) For p = 1, limε→0 ‖xxx‖11,ε = ‖xxx‖11.
(iv) �1,ε-norm with ε > 0 is both convex and smooth.
(v) For 0 < p ≤ 1, �p,ε-norm is the lower convex envelope

of �p-norm with ε >
√
1− p‖xxx‖∞.

Proof: The properties of (i), (ii), (iii) and (iv) are easily
verified. We focus on proving (v).

For (v), we first show that �p,ε-norm with ε >
√
1− p‖xxx‖∞

is a convex function, and then prove that �p,ε-norm is the lower
bound of �p-norm. Although we utilize the vector of length 2 to
analyze, the proof can be extended to different lengths.

Given a bounded xxx = [x1, x2]
T ∈ R2 with |x1| ≤ a and

|x2| ≤ b where a > 0 and b > 0, the �p,ε-norm function of xxx
is defined as:

f(x1, x2) = ‖xxx‖pp,ε
= (x2

1 + ε2)p/2 − εp + (x2
2 + ε2)p/2 − εp. (13)

The gradient of f(x1, x2) is:

∇f(x1, x2) =

[
∂f

∂x1
,
∂f

∂x2

]T

= [px1(x
2
1 + ε2)p/2−1, px2(x

2
2 + ε2)p/2−1]T (14)

and the Hessian matrix of f(x1, x2) is:

G(x1, x2) =

[
∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

]

=

[
T (x1) 0

0 T (x2)

][
P (x1) 0

0 P (x2)

]
(15)

where T (xi) = p(x2
i + ε2)p/2−2 and P (xi) = (p− 1)x2

i + ε2.
It is well known that the convexity condition of a multi-variable
f(x1, x2) is the Hessian matrix being positive definite in the
whole feasible region of xxx. For p = 1, G(x1, x2) is positive
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definite for positive ε. That is to say, �1,ε-norm is convex with
ε > 0. For 0 < p < 1, to make G(x1, x2) positive definite, the
terms of both P (x1) and P (x2) must be greater than zero for all
values of xxx. Mathematically, ε satisfies:{

(p− 1)x2
1 + ε2 > 0

(p− 1)x2
2 + ε2 > 0

(16)

which leads to ε >
√
1− pmax(a, b) =

√
1− p‖xxx‖∞. Hence,

the �p,ε-norm ofxxx is convex with ε >
√
1− p‖xxx‖∞ for 0 < p ≤

1. Now, we prove that �p,ε-norm is the lower bound of �p-norm
via constructing:

g(x1, x2) = ‖xxx‖pp,ε − ‖xxx‖pp
= (x2

1 + ε2)p/2 − εp − |x1|p

+ (x2
2 + ε2)p/2 − εp − |x2|p. (17)

Since g(x1, x2) is an even function, we only need to show
that g(x1, x2) ≤ 0 for x1 ≥ 0 and x2 ≥ 0. According to the
inequality of

√
c2 + d2 ≤ c+ d for all nonnegative c and d, it

can be obtained:

g(x1, x2) ≤ h(x1, x2)

= (x1 + ε)p − εp − xp
1 + (x2 + ε)p − εp − xp

2.
(18)

For p = 1, it is easy to get:

h(x1, x2) = (x1 + ε)− ε− x1 + (x2 + ε)− ε− x2 = 0
(19)

which means ‖xxx‖11,ε ≤ ‖xxx‖11 where the equal sign holds if and
only ifxxx = 000. For 0 < p < 1, each partial derivative ofh(x1, x2)
is:

p
(
(xi + ε)p−1 − xp−1

i

)
(20)

which is less than zero for xi > 0, implying that h(x1, x2) ≤
h(0, 0) = 0. Combining with g(x1, x2) ≤ h(x1, x2), we have
g(x1, x2) ≤ 0, indicating ‖xxx‖pp,ε ≤ ‖xxx‖pp where the equal sign
is satisfied if and only if xxx = 000. Hence, it has been proved that
the �p,ε-norm is the lower convex envelope of �p-norm with
ε >

√
1− p‖xxx‖∞ for 0 < p ≤ 1.

Lemma 3: The �p,ε-norm satisfies following properties:
(i) �p,ε-norm is more robust to outliers than �p-norm with

0 < p ≤ 1 and ε >
√
1− p‖xxx‖∞.

(ii) The unique minimum of the �p,ε-norm with 0 < p < 1
and ε >

√
1− p‖xxx‖∞ is equivalent to the global solution

to minimizing �p-norm.
Proof: Before proving (i), we first introduce the definition

of robustness. Robustness refers to the ability to deal with
deviations from the distributional assumptions [33], [35], while
outliers correspond to the data with large anomaly. Hence, a
method which is robust to outliers means that it can achieve small
performance loss even when the data largely deviate from the
assumed model. Compared with �2-norm that works perfectly
in additive Gaussian noise, �1-norm has better performance
under impulsive noise as �1-norm does not amplify outliers. To
prove (i), we adopt the inequality of (e2 + ε2)p/2 − εp < |e|p

for 0 < p ≤ 1. This means that �p,ε-norm has a stronger ability
than �p-norm to suppress outliers.

In (v) of Lemma 2, we have analyzed that �p,ε-norm is the
lower bound of �p-norm. For a residual e related to outlier, it
can be obtained that (e2 + ε2)p/2 − εp < |e|p for 0 < p ≤ 1.
Hence, the �p,ε-norm has better performance than �p-norm on
robustness to outliers with 0 < p ≤ 1 and ε >

√
1− p‖xxx‖∞.

To prove (ii), we first define:

fp(xxx) =

n∑
i=1

|xi|p (21)

where xxx is a vector with length n. Given a convex set X of xxx,
supposexxx∗ ∈ X is the global solution tominxxx f

p(xxx), we obtain:

fp(xxx∗) < fp(xxx) (22)

where xxx ∈ X but xxx �= xxx∗. Because xxx∗ is the global solution, for
xi with i ∈ [1, n], we have:

fp(x∗
1, . . . , x

∗
i , . . . , x

∗
n) < fp(x1, . . . , xi, . . . , xn). (23)

Since ∂fp/∂xi > 0 for xi > 0, and ∂fp/∂xi < 0 for xi < 0,
(23) leads to |xi| > |x∗

i |. Moreover, according to the Property
(i) of Lemma 2, we obtain:

f(x∗
1, . . . , x

∗
i , . . . , x

∗
n) < f(x1, . . . , xi, . . . , xn). (24)

This results in f(xxx∗) < f(xxx), indicating thatxxx∗ is the minimizer
of minxxx f(xxx). Moreover, since f(xxx) is convex, xxx∗ is the unique
minimizer. Therefore, the unique minimizer of �p,ε-norm is
equivalent to the global solution to minimizing �p-norm.

B. Comparison Between �p,ε-Norm and �p-Norm

Fig. 2 shows a comparison illustration between the �p,ε-norm
and �p-norm with p = 1 and p = 0.5. The left one indicates that
�1,ε-norm is smooth. Moreover, �1,ε-norm is the lower bound of
�1-norm. As shown by the right one, there exists great diversity
between �0.5,ε-norm and �0.5-norm. The difference implies that
�0.5,ε-norm has a better ability than �0.5-norm to resist outliers.
In addition, the �0.5,ε-norm is convex and has the same minimum
as the �0.5-norm.

C. Existing Alternative Proposals of �p-Norm

Our �p,ε-norm is inspired by the prior work [41] which pro-
poses a �p-approximation:

ue(xxx) =
n∑

i=1

(x2
i + e2)p/2 (25)

which is utilized to solve the best linear �p-approximation of a
function on a discrete point set for p ∈ (1, 2). However, our �p,ε-
norm based on the improvement of the prior �p-approximation
is to solve the problem caused by �p-norm with 0 < p ≤ 1.

Another method to replace �p-norm is proposed in [42]:

|x|11 ≈ xtanh(γx) (26)

where γ > 0 adjusts the approximate accuracy. However, this
method focuses on approximating �1-norm, which does not solve
the nonconvex problem of �p-norm with 0 < p < 1.
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Fig. 2. �p,ε-norm and �p-norm in one-dimensional case. Left: ε =
√
1− p×max(x) + 10−2 = 10−2. Right: ε is calculated by ε =

√
1− p×max(x) +

10−2 =
√
0.5× 10 + 10−2 = 7.081.

IV. �p,ε-NORM FOR ROBUST TENSOR COMPLETION

To facilitate the presentation, we first review the low-rank
matrix completion problem, which aims to recover a low-rank
matrix from a partially observed matrix, formulated as:

min
MMM

rank(MMM)

s.t.MMM �ΩΩΩ = YYY Ω (27)

where YYY Ω ∈ Rm×n is an observed matrix with missing entries,
ΩΩΩ is a binary matrix in which 1 and 0 mean that the corresponding
entries in YYY Ω are available and missing, respectively. Unfortu-
nately, minimizing rank is a NP-hard problem since the rank
function is discrete and nonconvex. There are two popular ap-
proaches to solve (27), namely nuclear norm minimization [43],
[44] and matrix factorization [45], [46]. The matrix factorization
scheme can avoid computing singular value decomposition [45],
which acquires a lower computational complexity than nuclear
norm minimization, corresponding to the following problem:

min
UUU,VVV

‖(UUUVVV )�ΩΩΩ− YYY Ω‖2F (28)

where UUU ∈ Rm×r and VVV ∈ Rr×n with r being the rank of the
target matrix. After obtaining UUU and VVV , the target matrix is
computed as MMM = UUUVVV .

According to the matrix completion formulation, the low-rank
tensor completion problem can be written as:

min
MMM

rank(MMM)

s.t.MMM�ΩΩΩ = YYYΩ

(29)

where YYYΩ ∈ RI1×···×In is a partially observed tensor. Herein,
ΩΩΩ is a binary tensor having the same dimensions with YYYΩ.
Inspired by matrix factorization approach, Wang et al. have
proposed utilizing TR decomposition to solve low-rank tensor
completion [34], leading to the following optimization problem:

min
XXX i:i=1,...,n

‖U(XXX 1 · · ·XXXn)�ΩΩΩ−YYYΩ‖2F (30)

where XXX i ∈ RR×Ii×R and R is the predefined TR rank. How-
ever, impulsive noise appears in many practical scenarios [36],
such as imperfection in sensors and communication channels.
It is well known that �2-space optimization works well in the
noiseless and Gaussian noise cases [47], while the performance
of �2-space optimization will significantly deteriorate in the
presence of outliers. One popular method to resist outliers is
to employ �p-norm (0 < p < 2). Whereas the �p-norm is non-
smooth and nonconvex with 0 < p ≤ 1. Nonsmoothness intro-
duces difficulty to optimize, and nonconvexity cannot guarantee
the global solution.

In order to suppress impulsive noise, we apply the �p,ε-norm
instead of the �p-norm in (30):

min
XXX i:i=1,...,n

‖U(XXX 1 · · ·XXXn)�ΩΩΩ−YYYΩ‖pp,ε. (31)

Since (31) includes n tensor variables, we adopt BCD [48], [49]
as the solver. The BCD method cyclically optimizes one XXX i at
each iteration while fixing the remaining variables:

XXX k+1
1 = argmin

XXX 1

‖U(XXX 1XXX k
2 · · ·XXX k

n)�ΩΩΩ−YYYΩ‖pp,ε

XXX k+1
2 = argmin

XXX 2

‖U(XXX k+1
1 XXX 2 · · ·XXX k

n)�ΩΩΩ−YYYΩ‖pp,ε
...

XXX k+1
n = argmin

XXXn

‖U(XXX k+1
1 XXX k+1

2 · · ·XXXn)�ΩΩΩ−YYYΩ‖pp,ε
(32)

where k represents the iteration number in the BCD scheme.
It can be seen from (32) that n subproblems have the same
structure. Therefore, we focus on one of them, say, XXX i, without
loss of generality. According to Lemma 1, minimizing XXX i can
be rewritten as:

XXX k+1
i = argmin

XXX i

‖U(XXX iXXX k)�ΩΩΩPi −YYYPi

Ω ‖pp,ε (33)

where XXX k = XXX k
i+1 · · ·XXX k

nXXX k
1 · · ·XXX k

i−1 ∈
RR×(Ii+1···InI1···Ii−1)×R. Then, based on mode-i unfolding,
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Algorithm 1: �p,ε-RTRC.

Input: Tensor with missing entries YYYΩ ∈ RI1×I2×···×In ,
binary tensor ΩΩΩ ∈ RI1×I2×···×In , TR rank R
Initialize: Randomize XXX i =∈ RR×Ii×R with i ∈ [1, n]
for k = 1, 2, · · · do

for i = 1 : n do
for δi = 1 : Ii do

1) Utilize Algorithm 3 to calculate
XXX k+1

i (:, δi, :) = argmin
XXX

δi
i

‖AAAvec(XXXδi
i )− yyyΩδi

‖pp,ε
end for

end for
Stop if stopping criterion is met.

end for
Output: MMM = U(XXX k+1

1 XXX k+1
2 · · ·XXX k+1

n )

(34) is equivalent to the following matrix completion problem:

XXX k+1
i = argmin

XXX i

‖U(XXX iXXX k)[i] �ΩΩΩPi

[i] −YYYPi

Ω [i]‖pp,ε. (34)

Since XXX i can be decomposed into Ii lateral slices, denoted as
XXX i(:, δi, :) with 0 < δi < Ii, (34) can be split into Ii subprob-
lems:

XXX k+1
i (:, δi, :) = arg min

XXX i(:,δi,:)
‖U(XXX i(:, δi, :)XXX k)[i]

�ΩΩΩPi

[i] (δi, :)−YYYPi

Ω [i](δi, :)‖pp,ε. (35)

Note that all of U(XXX i(:, δi, :)XXX k)[i], ΩΩΩ
Pi

[i] (δi, :) and YYYPi

Ω [i](δi, :)
are vectors. Because the result of (35) is only influenced by the
observed entries, (35) is equivalent to:

XXX k+1
i (:, δi, :) = arg min

XXX i(:,δi,:)
‖U(XXX i(:, δi, :)XXX k

Ωδi
)[i]−yyyΩδi

‖pp,ε
(36)

herein XXX k
Ωδi

∈ RR×‖ΩΩΩδi
‖0×R and yyyΩδi

∈ R‖ΩΩΩδi
‖0 include the

observed entries ofXXX k andYYYPi

Ω [i](δi, :), respectively, whereΩΩΩδi

is the subset of ΩΩΩPi

[i] (δi, :), and only contains entries of 1. The

tensor XXX i(:, δi, :) ∈ RR×1×R can be represented by a matrix
XXXδi

i ∈ RR×R. Then, based on (11), (36) can be rewritten as a
sum of all entries, leading to:

XXX k+1
i (:, δi, :) = argmin

XXX
δi
i

‖ΩΩΩδi
‖0∑

j=1

‖tr(XXXδi
i ×XXX k

Ωδi
(:, j, :))

− yyyΩδi
(j)‖pp,ε (37)

Lemma 4: Suppose AAA ∈ RI1×I2 and BBB ∈ RI2×I1 , we have:

tr(AAA×BBB) = vec(BBBT)Tvec(AAA). (38)

According to Lemma 4, (37) can be simplified as:

XXX k+1
i (:, δi, :) = argmin

XXX
δi
i

‖AAAvec(XXXδi
i )− yyyΩδi

‖pp,ε (39)

whereAAA ∈ R‖ΩΩΩδi
‖0×R2

andAAA(j, :) = vec(XXX k
Ωδi

(:, j, :)T )T with
j ∈ [1, ‖ΩΩΩδi‖0]. In our work, (39) is called �p,ε-RLR. In the next
section, we propose two efficient methods to solve �p,ε-RLR.

The robust TR completion (�p,ε-RTRC) is summarized in
Algorithm 1. The stopping condition depends on the tolerance
parameter:

η =
‖U(XXX k+1

1 XXX k+1
2 · · ·XXX k+1

n )[1] − U(XXX k
1XXX k

2 · · ·XXX k
n)[1]‖2F

‖U(XXX k
1XXX k

2 · · ·XXX k
n)[1]‖2F

.

(40)
When η < 10−4 is reached, we terminate the algorithm. Our
experiments show that the proposed algorithm usually converges
within a dozen iterations. To facilitate proving the local conver-
gence of Algorithm 1, we define a cost function:

C(XXX 1,. . . ,XXX i,. . .XXXn) = ‖U(XXX 1. . .XXX i. . .XXXn)�ΩΩΩ−YYYΩ‖pp,ε.
(41)

Then we prove that �p,ε-RTRC keeps C(XXX 1,. . . ,XXX i,. . .,XXXn)
nonincreasing.

Proof:

C(XXX k+1
1 ,. . .,XXX k+1

i ,. . .,XXX k+1
n )− C(XXX k

1 ,. . .,XXX k
i ,. . .,XXX k

n)

=C(XXX k+1
1 ,XXX k

2 , . . . ,XXX k
n)− C(XXX k

1 ,XXX k
2 , . . . ,XXX k

n)

+. . .

+C(XXX k+1
1 ,. . .,XXX k+1

i ,. . .,XXX k
n)− C(XXX k+1

1 ,. . .,XXX k
i ,. . .,XXX k

n)

+. . .

+C(XXX k+1
1 . . .,XXX k+1

i ,. . .,XXX k+1
n )−C(XXX k+1

1 ,. . .,XXX k+1
i ,. . .,XXX k

n).
(42)

We know that each block XXX i is updated by the same
scheme, namely (39). If C(XXX k+1

1 , . . . ,XXX k+1
i , . . . ,XXX k

n)−
C(XXX k+1

1 , . . . ,XXX k
i , . . . ,XXX k

n) ≤ 0 holds, we can obtain
C(XXX k+1

1 , . . . ,XXX k+1
i , . . . ,XXX k+1

n )− C(XXX k
1 , ·,XXX k

i , . . . ,XXX k
n) ≤ 0.

Problem (39) is a convex optimization problem be-
cause ‖·‖pp,ε with 0<p<2 is a convex operator. In

addition, XXX k+1
i is determined from Algorithm 3, and

the convergence of Algorithm 3 is guaranteed. Thus,
XXX k+1

i minimizes C(XXX k+1
1 ,. . .,XXX i,. . .,XXX k

n), resulting in
C(XXX k+1

1 ,. . .,XXX k+1
i ,. . .,XXX k

n)−C(XXX k+1
1 ,. . .,XXX k

i ,. . .,XXX k
n) ≤

0. Therefore, C(XXX k+1
1 ,. . .,XXX k+1

i ,. . .,XXX k+1
n )−

C(XXX k
1 ,. . .,XXX k

i ,. . .,XXX k
n)≤0, which implies that

C(XXX 1, . . . ,XXX i, . . . ,XXXn) is nonincreasing. It is clear that
the loss function is upper bounded by C(XXX 1

1, . . . ,XXX 1
i , . . . ,XXX 1

n)
while C(XXX 1, . . . ,XXX i, . . . ,XXXn) is lower bounded by 0. Given
that (31) is a nonconvex optimization problem, the local
convergence of �p,ε-RTRC is thus guaranteed.

V. �p,ε-NORM FOR ROBUST LINEAR REGRESSION

In this section, two efficient approaches are presented to solve
the �p,ε-RLR problem, namely GD-�p,ε-norm and ADMM-�p,ε-
norm. We first use a concise expression to replace (39), leading
to:

min
xxx

f(xxx) = min
xxx

‖AAAxxx− yyy‖pp,ε (43)

where AAA ∈ Rm×n, xxx ∈ Rn and yyy ∈ Rm.
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Algorithm 2: GD-�p,ε-Norm.

Input: AAA, yyy and μ
Initialize: randomize xxx1

for t = 1, 2, · · · do
1) adjust ε =

√
1− p‖AAAxxxt − yyy‖∞ + 10−2

2) compute ∇f(xxxt)
3) xxxt+1 = xxxt − μ∇f(xxxk)
Stop if stopping criterion is met.

end for
Output: x̂xx = xxxt+1

A. GD-Based Method

Since (43) is an unconstrained and convex optimization prob-
lem with 0 < p < 2, the simplest scheme is GD [50], [51].
For (43), the gradient of f(xxx) is:

∇f(xxx) = pAAATggg (44)

whereggg ∈ Rm and gi = ((aaaTi xxx− yi)
2 + ε2)p/2−1(aaaTi xxx− yi) is

the ith entry of ggg with aaaTi and yi being the ith row of AAA and ith
entry ofyyy, respectively. The GD utilizes the negative direction of
∇f(xxx) to optimize xxx with step size μ. Algorithm 2 summarizes
the GD-�p,ε-norm method.

In our study, the stopping condition is:

‖xxxt+1 − xxxt‖22
‖xxxt‖22

≤ 10−8. (45)

The GD method is a traditional technique such that the con-
vergence of GD has been analyzed by lots of prior works. One
famous book written by Boyd and Vandenberghe provides the
detailed proof of the convergence [51].

B. ADMM-Based Method

It is known that ADMM is a simple and powerful method to
solve constrained convex optimization problems since it inherits
the merits of dual ascent and augmented Lagrangian algorithms,
namely the decomposability of dual ascent and the superior
convergence property of augmented Lagrangian. Furthermore,
the high efficiency of ADMM in the big-scale problem has been
revealed [52].

To adopt ADMM, it requires converting the unconstrained
problem (43) to a constrained problem via introducing eee =
AAAxxx− yyy, leading to:

min
xxx,eee

‖eee‖pp,ε
s.t.eee = AAAxxx− yyy. (46)

Then, the augmented Lagrangian of (46) is:

Lλ(xxx,eee,ΛΛΛ) = ‖eee‖pp,ε + 〈ΛΛΛ,AAAxxx− yyy − eee〉

+
λ

2
‖AAAxxx− yyy − eee‖2F

(47)

where ΛΛΛ ∈ Rm contains the Lagrange multipliers and λ > 0 is
penalty parameter. According to the dual ascent method, (47)

can be solved by iterative updating with the following strategy:

(xxxt+1, eeet+1) := argmin
xxx,eee

Lλ(xxx,eee,ΛΛΛ
t) (48)

ΛΛΛt+1 = ΛΛΛt + λ(AAAxxxt+1 − yyy − eeet+1). (49)

Yet, dual ascent cannot directly solve (48) since it is minimized
with respect to two optimization variables. To solve this issue,
ADMM which adopts the alternating direction approach to
update xxx and eee is applied, consisting of the following iterations:

xxxt+1 := argmin
xxx

Lλ(xxx,eee
t,ΛΛΛt) (50)

eeet+1 := argmin
eee

Lλ(xxx
t+1, eee,ΛΛΛt) (51)

ΛΛΛt+1 = ΛΛΛt + λ(AAAxxxt+1 − yyy − eeet+1) (52)

The subproblem (50) is equivalent to the following �2-norm
minimization problem:

min
xxx

∥∥∥∥AAAxxx−
(
yyy + eeet − ΛΛΛt

λ

)∥∥∥∥
2

2

(53)

which has a closed-form solution:xxxt+1 = AAA†(yyy + eeet − ΛΛΛt

λ ). For
subproblem (51), it can be simplified as:

min
eee

1

λ
‖eee‖pp,ε +

1

2
‖eee− zzzt‖22 (54)

where

zzzt = AAAxxxt+1 − yyy +
ΛΛΛt

λ
. (55)

It is easy to reveal that (54) can be decomposed into m indepen-
dent scalar problems:

min
el

m∑
l=1

[
1

λ
((e2l + ε2)p/2 − εp) +

1

2
(el − zkl )

2

]
(56)

where el and zkl are the lth entry of eee and zzzt, respectively. To the
best of our knowledge, it is the first time to propose the problem
(56) which has not been solved with 0 < p ≤ 1. To tackle (56),
we first define:

J(el) =
1

λ
((e2l + ε2)p/2 − εp) +

1

2
(el − ztl )

2 (57)

then the minimizer of minel J(el) can be calculated via:

J ′(el) =
p

λ
el(e

2
l + ε2)p/2−1 + el − ztl = 0. (58)

For ztl �= 0, it is found that J ′(|ztl |) > 0 and J ′(−|ztl |) < 0. That
is to say, J ′(|ztl |)J ′(−|ztl |) < 0 which means that the root of
J ′(el) = 0 lies in [−|ztl |, |ztl |]. Moreover, the second derivative
of J(el) is:

J ′′(el) =
p

λ
(e2l + ε2)p/2−2((p− 1)e2l + ε2) + 1. (59)

According to the Property (v) of �p,ε-norm, (p− 1)e2l + ε2 > 0
under a given ε. Hence, J ′′(el) > 0 holds for el in [−|ztl |, |ztl |]
which implies that J ′(el) is monotonically increasing in
[−|ztl |, |ztl |]. Therefore, the root of J ′(el) = 0 is unique in
[−|ztl |, |ztl |], and can be quickly calculated via the bisection
method with a complexity of O(1) [55], [56]. On the other
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Algorithm 3: ADMM-�p,ε-Norm.

Input: AAA, yyy and λ
Initialize: randomize eee0 and ΛΛΛ0

for t = 1, 2, · · · do
1) xxxt+1 = AAA−1(yyy + eeet − ΛΛΛt

λ )

2) calculate zzzt = AAAxxxt+1 − yyy + ΛΛΛt

λ
3) adjust ε =

√
1− pmax(‖eeet‖∞, ‖zzzt‖∞) + 10−2

4) eeet+1 := argmineee Lλ(xxx
t+1, eee,ΛΛΛt)

5) ΛΛΛt+1 = ΛΛΛt + λ(AAAxxxt+1 − yyy − eeet+1)
Stop if stopping criterion is met.

end for
Output: x̂xx = xxxt+1

hand, for ztl = 0, the minimizer and the minimum of J(el) are
obviously 0.

For 1 < p < 2, (56) is the same as the standard �p-norm
problem. Then, J(el) is simplified as:

J(el) =
1

λ
|el|pp +

1

2
(el − ztl )

2 (60)

which has been tackled [57]:

e∗l =

⎧⎪⎨
⎪⎩
arg min

el∈{0,e+l }
J(el), if ztl ≥ 0

arg min
el∈{0,e−l }

J(el), if ztl < 0
(61)

where e+l and e−l are the solutions corresponding to J(el) in the
cases of ztl ≥ 0 and ztl < 0, respectively. For ztl ≥ 0, J ′(el) is
monotonically increasing in [0,+∞). Furthermore, J ′(0) < 0
and J ′(ztl ) > 0 indicate that a unique root e+l lies in [0, ztl ],
and can be found by the bisection method. In the same manner,
the unique root e−l ∈ [ztl , 0] is obtained from solving J ′(el) =
0 for ztl < 0 via the bisection approach as well since J ′(el)
monotonically increases in [ztl , 0], and J ′(0)J ′(ztl ) < 0.

For (52), the gradient of Lλ(xxx
t+1, eeet+1,ΛΛΛ) with respect to ΛΛΛ

is

∂Lλ(xxx
t+1, eeet+1,ΛΛΛ)

∂ΛΛΛ
= AAAxxxt+1 − yyy − eeet+1. (62)

In summary, ADMM solves the dual problem of (47):

max
ΛΛΛ

min
xxx,eee

Lλ(xxx,eee,ΛΛΛ). (63)

The ADMM-�p,ε-norm method is summarized in
Algorithm 3. The stopping criterion is the same as that of
Algorithm 2.

Regarding ADMM analysis, the theoretical convergence of
closed, proper and convex functions has been proved in [52]. The
�p,ε-norm with 0 < p < 2 is also closed, proper, and convex. In
addition, it has been reported that employing ADMM to optimize
the function with more than two variables may not ensure
convergence [53]. Whereas ADMM-�p,ε-norm just updates two
parameters, namely xxx and eee. Therefore, the convergence of the
ADMM-�p,ε-norm is guaranteed.

C. Parameter Setting

We first discuss the step size μ of the GD-�p,ε-norm. If
μ is large, the algorithm will oscillate rather than converge.
Conversely, if μ is small, the algorithm requires a large number
of iterations to converge. Hence, two schemes to optimize μ
in each iteration are proposed, including exact line search and
backtracking line search [51]. Both aim to search for a relatively
appropriate μ. However, GD-�p,ε-norm is not adopted to solve
�p,ε-RTRC, because it is difficult to select an appropriate μ in
practice. The reason is that large size of AAA in tensor completion
results in very large magnitude of the gradient, which makes
convergence precision extremely sensitive to μ. For instance, a
change of 10−5 in μmay affect the convergence precision, while
10−4 can cause oscillation.

Regarding the penalty parameter λ of ADMM-�p,ε-norm,
through our experiments, we have found that λ can be flexibly
selected as a constant throughout the iterative process. Never-
theless, the algorithm with a smaller λ will converge faster than
that with a larger λ. On the other hand, it has been suggested
that a time-varying λ can speed up convergence [52], [54]. But
the convergence of ADMM with varying λ has not been proved.
Therefore, a fixed value of λ is adopted.

D. Computational Complexity

For the GD-�p,ε-norm method, the computational complex-
ity is O(Tmn) where T is the iteration number. Whereas
the ADMM-�p,ε-norm has a higher computational complex-
ity: O(Tm2n) because it needs to calculate the inverse of
AAA. If RLR is solved by two popular approaches, namely, it-
eratively reweighted least squares-based �p-norm (IRLS-�p-
norm) and ADMM-�p-norm, their computational complexities
are O(Tm2n).

VI. SIMULATION RESULTS

All simulations are run on a computer with 3.2 GHz CPU and
16 GB memory.

A. Comparison Between �p,ε-Norm and �p-Norm

We first compare the two proposed algorithms with the vari-
ants based on �p-norm to tackle RLR. The results are based on
synthetic random data. The entries of AAA ∈ R5000×20 and xxx ∈
R20 obey the standard Gaussian distribution. The independent
noise vector nnn ∈ R5000 is generated according to the Gaussian
mixture model (GMM) noise whose probability density function
is:

pv(v) =

2∑
i=1

ci√
2πσi

exp

(
− v2

2σ2
i

)
(64)

where c1 + c2 = 1 with 0 < ci < 1 and σ2
i is variance. To

simulate impulsive noise, σ2
2 � σ2

1 and c2 < c1 are used, which
means that large noise samples with σ2

2 and c2 are mixed in
Gaussian background noise with small variance σ2

1 . In our sim-
ulations, we set σ2

2 = 100σ2
1 and c2 = 0.1. The signal-to-noise
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Fig. 3. MSE versus iteration number in GMM noise at SNR= 3 dB withp = 1
by ADMM-�p,ε-norm, GD-�p,ε-norm, ADMM-�p-norm and IRLS-�p-norm.

ratio (SNR) is defined as:

SNR =
‖xxx‖22

dim(xxx)σ2
v

(65)

where σ2
v =

∑
i ciσ

2
i is the total noise variance. The observed

vector yyy is generated using AAAxxx+nnn. The target is to restore xxx
given AAA and yyy. Performance is evaluated by the mean square
error (MSE), defined as

MSE(x̂xx) = E

{‖x̂xx− xxx‖22
‖xxx‖22

}
(66)

where x̂xx is the recovered vector, and MSE is based on 100
independent trials.

Fig. 3 depicts the convergence performance of ADMM-�p,ε-
norm, GD-�p,ε-norm, ADMM-�p-norm and IRLS-�p-norm with
p = 1 in additive GMM noise of SNR=3 dB. The steady-state
MSEs of ADMM-�p,ε-norm and GD-�p,ε-norm are 0.006 113
and 0.007 198, respectively. The ADMM-�p-norm and IRLS-�p-
norm have a similar steady-state MSE of 0.009 474. Thus, the
�1,ε-norm has better performance on robustness against outliers
than �1-norm owing to Property (i) of Lemma 3. Compared with
the GD-�p,ε-norm, the convergence rate of ADMM-�p,ε-norm is
faster.

Fig. 4 evaluates the performance of the four approaches
at 0 < p < 1 and 3 dB GMM noise where 100 convergence
curves are plotted. Compared with the ADMM-�p-norm and
IRLS-�p-norm, the ADMM-�p,ε-norm and GD-�p,ε-norm have
an overwhelming advantage. The reason is that �p-norm with
0 < p < 1 is non-convex, so it cannot search for the global solu-
tion in every trial, which results in 100 inconsistent steady-state
MSEs. In contrast, �p,ε-norm with 0 < p < 1 is convex such
that ADMM-�p,ε-norm and GD-�p,ε-norm converge to the same
MSE value each time.

Selection of p: Based on the above simulation, we then study
the choice of p at different levels of GMM noise. Table I depicts
the effect of p on the recovery accuracy under different SNRs.
It can be seen that p = 1.4 has the best performance for weak
outliers. When the SNR of GMM noise goes down to 15 dB and
12 dB, p = 1.2 is the best. As the SNR continues to decrease,
p = 1.0 results in the best performance. While p = 0.8 outper-
forms other values at SNR=6 dB. For the strongest outliers, it

TABLE I
COMPARISON OF p ON RECOVERY ACCURACY AT DIFFERENT SNRS

requires p = 0.6 to obtain the best performance. In short, when
the outliers are stronger, the value of p is required to be smaller.

B. Color Image Inpainting With Salt-and-Pepper Noise

The first application of low-rank tensor completion is color
image inpainting, which is inspired by the widespread use of
low-rank matrix completion. In fact, an image may not be fully
captured due to damage to the photosensitive device or the
shadow from other objects. In addition, the image data will
be mixed with impulsive noise during wireless transmission.
We know that low-rank matrix completion can deal with gray-
scale images represented as matrices. Compared with gray-
scale images, color images have RGB channels. Hence, a color
image can be viewed as a 3rd-order tensor. In this section,
two color images are examined:Windows(480× 500× 3) and
Einstein(600× 600× 3). To measure the performance of the
recovered images, two evaluation indices are utilized, namely
peak SNR (PSNR) and structural similarity (SSIM). We directly
use the MATLAB commands, namely, ‘psnr(recovered, origi-
nal)’ and ‘ssim(recovered, original)’. Larger values of PSNR
and SSIM mean that the recovery performance is better. Five
existing approaches are compared with our ADMM-�p,ε-RTRC,
including tensor ring completion (TRC) [34], fast low rank ten-
sor completion (FaLRTC) [6], simple low rank tensor comple-
tion (SiLRTC) [6], ADMM-t-SVD [30], �p-PARAFAC [37] and
IR-t-SVD [38]. In the field of image processing, salt-and-pepper
noise is a popular impulsive model and therefore it is added to
the incomplete image. Salt-and-pepper noise is generated by the
command ‘imnoise(XXX , ’salt & pepper,’ ρ)’ in MATLAB where
XXX is the image tensor, ρ is the normalized noise intensity. The
relationship between ρ and SNR is ρ = 1/SNR.

Fig. 5 depicts the performance of seven methods with 70%
data loss and 5 dB salt-and-pepper noise. The case of high
intensity salt-and-pepper noise is shown in Fig. 6 where the
missing ratio is still 70%, but SNR becomes 2 dB. Combin-
ing Figs. 5 and 6, it can be seen that the ADMM-�p,ε-RTRC
can effectively restrain outliers according to slight changes of
PSNR and SSIM from 5 dB to 2 dB salt-and-pepper noise.
TRC utilizes Frobenius norm so as to have severe degradation
when the intensity of salt-and-pepper noise becomes strong.
For FaLRTC, SiLRTC and ADMM-t-SVD, these three methods
are not designed for noisy situations, hence their performance
is unsatisfactory no matter whether the salt-and-pepper noise
is weak or strong. It can be observed from Fig. 5 that the
images recovered by FaLRTC, SiLRTC and ADMM-t-SVD still
retain outliers. Moreover, �p-PARAFAC and IR-t-SVD employ
�p-norm to resist outliers, but their results are still worse than that
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Fig. 4. MSE versus iteration number in GMM noise at SNR = 3 dB with 0 < p > where the performance of 100 trials is plotted by ADMM-�p,ε-norm,
GD-�p,ε-norm, ADMM-�p-norm and IRLS-�p-norm.

Fig. 5. Performance of different approaches with 70% randomly missing data
and SNR = 5 dB salt-and-pepper noise.

of ADMM-�p,ε-RTRC. Furthermore, compared with FaLRTC,
SiLRTC and ADMM-t-SVD, we see that �p-PARAFAC is able
to resist outliers, but it cannot ideally recover the image. The
reason is that CP rank is not suitable for image data. On the

Fig. 6. Performance of different approaches with 70% randomly missing data
and 2 dB salt-and-pepper noise.

other hand, the reason for poor performance of IR-t-SVD is that
tensor tubal rank is only applicable to the outliers following the
random tubal distribution.

The impact of p is studied in Fig. 7 which shows the PSNR
versus p. We observe that the proposed algorithm has stable and
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Fig. 7. Performance of p versus PSNR with 70% randomly missing data
entries and 5 dB salt-and-pepper noise.

Fig. 8. Results of portrait with 70% missing data and 2 dB salt-and-pepper
noise.

good performance in the case of 0 < p < 1. Yet if robust tensor
completion is solved by �p-norm, the performance will become
unstable and poor with 0 < p < 1 due to the nonconvexity of
�p-norm. On the other hand, the ability to resist outliers becomes
weaker with p increasing and hence PSNR reduces as p increases
from 1 to 2.

Another image which belongs to the portrait type and has
different dimensions from the first image is investigated. The
results are shown in Fig. 8. We see that the ADMM-�p,ε-RTRC
with p = 1 has the best recovery performance in terms of both
objective evaluation indices and subjective observation.

C. Video Inpainting With Salt-and-Pepper Noise

As the extension of color image data, color video is a typical
representation of 4th-order tensors, which can be viewed as a set
of color images arranged in the time channel in chronological

order. The investigated video is about gun shooting [34]. Its
dimensions are 100× 260× 3× 85 which means that it con-
tains 85 color images. Since FaLRTC, SiLRTC, ADMM-t-SVD,
�p-PARAFAC and IR-t-SVD cannot reconstruct the video un-
der a high intensity salt-and-pepper noise, their results are not
reported.

Fig. 9 depicts the results recovered by ADMM-�p,ε-RTRC and
TRC under the condition of 30% random observation ratio and
2 dB salt-and-pepper noise. We select 7 representative frames
from 85 frames to illustrate the performance, that is, 1st frame,
15th frame, 29th frame, 43 rd frame, 57th frame, 71st frame,
85th frame. It can be seen that the ADMM-�p,ε-RTRC can
effectively resist outliers. The PSNRs in dB corresponding to the
seven frames are 21.2830, 21.6936, 22.2226, 22.6552, 22.7389,
22.8456 and 22.8703, respectively. On the other hand, the SSIMs
of the seven recovered frames are 0.5723, 0.6083, 0.6654,
0.6972, 0.7180, 0.7338 and 0.7302, respectively. Compared with
ADMM-�p,ε-TRC, the performance of TRC is not satisfactory.

D. Target Estimation With GMM Noise

In this subsection, we apply the proposed approach to deal
with the source localization problem in bistatic MIMO radar.
In practice, the complete data for the direction-of-departure
(DOD) and direction-of-arrival (DOA) estimation may not be
collected at the receiver front-end due to various reasons, such
as temporarily broken-down transmit or receive antennas, sub-
Nyquist sampling, or even intentionally forbidden antennas for
energy saving purposes. Here, ADMM-�p,ε-RTRC is employed
to recover the incomplete received data. Four existing methods
are also included in this evaluation, which are high accuracy low
rank tensor completion (HaLRTC) [6], �p-PARAFAC, acceler-
ated proximal gradient line-search tensor completion (APGL-
TC) [9] and fixed point iterative method for low n-rank tensor
pursuit (FP-LRTC) [20].

We assume that the MIMO radar system has the following
parameters:
� Mt co-located antennas in the transmit array and Mr co-

located antennas in the receive array;
� dt and dr are the respective inter-element distances of

antennas in the transmit and receive arrays;
� K targets in the range-bin of interest;
� Matrix SSS = [sss1, sss2, . . . , sssMt

]T ∈ RMt×L contains the Mt

narrowband transmit pulse waveforms, where L is the
number of samples per pulse period.

� {βk} with k = 1, 2, . . . ,K are the radar cross section
fading coefficients;

� {θk} and {φk} with k = 1, 2, . . . ,K are the DODs and
DOAs corresponding to the transmit and receive array
normal, respectively.

Then, the baseband received signal at the output of the receive
array in the qth pulse after synchronization can be written as:

XXXq = BBBΣΣΣqAAA
TSSS +NNNq (67)

where XXXq ∈ C
Mr×L, NNNq ∈ C

Mr×L is GMM noise
matrix, ΣΣΣq = diag(cccq) with cccq = [β1q, . . . , βKq],
AAA = [aaa(θ1), . . . , aaa(θK)]T ∈ C

Mt×K and BBB =
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Fig. 9. Performance on video recovery by ADMM-�p,ε-RTRC and TRC with 70% randomly missing data and SNR = 2 dB salt-and-pepper noise. The first row
contains seven frames of the original video. The second row shows the corresponding missing and noisy frames. The results recovered by TRC are shown in the
third row. The restored frames by ADMM-�1,ε-RTRC are represented in the bottom row.

Fig. 10. AMSE versus different GMM noise levels for different tensor completion methods with 30% observation ratio.

[bbb(φ1), . . . , bbb(φK)]T ∈ C
Mr×K are the transmit steering

matrix and receive steering matrix, respectively, where

aaa(θk) = [1, ej2πdt sin(θk)/λ, . . . , ej2πdt(Mt−1) sin(θk)/λ]T

bbb(φk) = [1, ej2πdr sin(φk)/λ, . . . , ej2πdr(Mr−1) sin(φk)/λ]T

(68)
Suppose that there are Q pulses, the received signal can be

organized as a 3rd-order tensor, denoted byXXX ∈ C
Mr×L×Q. The

low-rank tensor completion in the DOD and DOA estimation
problem assumes that the received signal XXX is incomplete.
Hence, it requires estimating a received signal X̂XX based on the
incomplete measurements, and then utilizes X̂XX to estimate {θk}
and {φk}. In the estimation process, the matched-filter output
is:

YYY(:, :, q) =
X̂XX (:, :, q)SSSH

L
(69)

Then, {θk} and {φk} are estimated based on YYY by the conven-
tional PARAFAC method [8].

In our simulation, λ = 0.3, Mt = Mr = 30, Q =
L = 128, K = 5, θθθ = [10◦, 20◦, 30◦,−10◦, 0◦], φφφ =

[25◦,−30◦,−15◦, 15◦, 5◦] and observation ratio is 30% which
means that only 30% data of XXX is collected. To the evaluate
performance, average mean square error (AMSE) between the
estimated and true values is adopted:

AMSE =
1

100K

100∑
m=1

5∑
k=1

(ξk − ξ̂mk )2 (70)

where ˆξmk denotes the estimate of ξk in the mth trial. Herein, ξk
is θk or φk.

Because the proposed method cannot process complex-valued
data, the real and imaginary parts of the data are separated, and
then these two parts are restored individually. After obtaining the
recovered real and imaginary parts, the restored X̂XX is obtained
by combining these two parts.

Fig. 10 shows the estimation performance when the SNR of
GMM noise varies from 0 dB to 30 dB. “Full data” means that
XXX is utilized to estimate {θk} and {φk} by PARAFAC. For
each of the remaining methods, it first estimates X̂XX based on
incomplete XXXΩΩΩ = XXX �ΩΩΩ by tensor completion, and then uses
X̂XX to estimate {θk} and {φk} by PARAFAC. It can be seen that
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our method and �p-PARAFAC have better performance than the
other three methods since APGL-TC, FP-LRTC and HaLRTC
are not designed for outliers. Moreover, ADMM-�p,ε-RTRC
outperforms �p-PARAFAC. Note that both the proposed method
and �p-PARAFAC is even superior to the “full data” scheme
because they can remove the outliers when constructing X̂XX .

VII. CONCLUSION

In this paper, we devise the �p,ε-norm to replace �p-norm for
resisting outliers. Then we reformulate the robust tensor com-
pletion problem by using TR rank and �p,ε-norm. To solve RLR,
two algorithms are developed. The first one adopts GD which
has a low computational complexity. In the second method, we
utilize ADMM to solve the �p,ε-RLR problem, yielding a fast
convergence rate. It is shown that our methods outperform the
algorithms based on �p-norm to solve RLR. Simulations and
experiments based on real-world and synthetic data demonstrate
that the proposed robust tensor completion approach is superior
to TCR, FaLRTC, SiLRtC, APGL-TC, FP-LRTC, HaLRTC,
�p-PARAFAC and IR-t-SVD in terms of outlier-robustness.

Although the two algorithms are designed for RLR, only
ADMM-�p,ε-norm is utilized to solve the robust tensor com-
pletion problem. In tensor completion problem, GD-�p,ε-norm
may occur oscillation rather than convergence. The reason is
that the large size of tensor can result in enormous magnitude
of the gradient in GD-�p,ε-norm. The recovery accuracy is quite
sensitive to the step-size. Yet the aforementioned methods for
step-size selection cannot solve this issue. Therefore, a future
work is to appropriately determine the step-size of the GD-�p,ε-
norm in each iteration.
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