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Robust Matrix Completion Based on Factorization
and Truncated-Quadratic Loss Function

Zhi-Yong Wang , Xiao Peng Li , and Hing Cheung So , Fellow, IEEE

Abstract— Robust matrix completion refers to recovering a
low-rank matrix given a subset of the entries corrupted by
gross errors, and has various applications since many real-world
signals can be modeled as low-rank matrices. Most of the existing
methods only perform well for noise-free data or those with
zero-mean white Gaussian noise, and their performance will be
degraded in the presence of outliers. In this paper, based on
the factorization framework, we propose a novel robust matrix
completion scheme via using the truncated-quadratic loss func-
tion, which is non-convex and non-smooth, and half-quadratic
theory is adopted for its optimization. By introducing an auxiliary
variable, half-quadratic optimization (HO) can transform the
loss function into two tractable forms, that is, additive and
multiplicative formulations. Block coordinate descent method is
then exploited as their solver. Compared with the additive form,
the multiplicative variant has lower computational cost since we
attempt to take the observations contaminated by outliers as
missing entries. Numerical simulations and experimental results
based on image inpainting and hyperspectral image recovery
demonstrate that our algorithms are superior to the state-of-
the-art methods in terms of restoration accuracy and runtime.
MATLAB code is available at https://github.com/bestzywang.

Index Terms— Robust low-rank matrix completion, outlier,
non-convex and non-smooth loss function, block coordinate
descent.

I. INTRODUCTION

LOW-RANK matrix completion [1], [2], [3] is an impor-
tant approach to recover the missing entries given an

incomplete matrix. It has been widely used in numerous areas,
e.g., hyperspectral remote sensing [4], [5], collaborative filter-
ing [6], [7], image inpainting [8], [9], multi-task learning [10],
system identification [11] and deep learning [12], because
many real-world data have a low-rank or approximately low-
rank structure. For instance, matrix completion can be used
to restore the missing pixels of images since their main
information often lies in a lower-dimensional subspace [13].

Intuitively, constrained rank minimization [14] can be
utilized to match an incomplete matrix, and recover its
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missing entries. Nevertheless, the model is NP-hard since the
rank function is discrete. Nuclear norm as the convex relax-
ation of the rank function is suggested to practically address
this problem, and the corresponding theoretical analysis can be
found in [14] and [15]. To solve nuclear norm minimization,
schemes such as singular value thresholding (SVT) [16], fixed
point continuation with approximating singular value decom-
position (FPCA) [17], and accelerated proximal gradient with
linesearch (APGL) [18], are proposed. However, full singular
value decomposition (SVD) calculation is needed at each
iteration, leading to a huge computational cost, particularly
for large-size data.

To avoid performing full SVD, approaches based on reduced
rank approximation or truncated SVD, including singular value
projection (SVP) [19], normalized iterative hard thresholding
(NIHT) [20], and alternating projection (AP) [21], are devel-
oped. Since truncated SVD is performed at each iteration,
their computational cost can be greatly reduced especially
when the assumed rank r is much smaller than the matrix
column/row length. In addition, low-rank matrix factorization
based methods such as low-rank matrix fitting (LMaFit) [22]
and alternating minimization for matrix completion (AltMin-
complete) [23] have been proposed, whose idea is to replace
the target matrix with the product of two rank-r matrices.
Moreover, Zhu et al. [24], [25] have analyzed that although
the matrix completion problem based on factorization is non-
convex, there are no spurious local minima and the global
optimality can be attained under some mild conditions.

Conventionally, the derivation of matrix completion meth-
ods is based on the Euclidean space. The forementioned
schemes can work well under the assumption of data with-
out noise or corrupted by white Gaussian noise. However,
non-Gaussian gross errors occur in many practical scenarios
[26], [27]. For example, the salt-and-pepper noise is a common
impulsive disturbance in images [28]. The recovery perfor-
mance of traditional matrix completion algorithms will be
degraded when the observations contain outliers. Hence, it is
necessary to develop recovery schemes to resist outliers. In this
study, outliers and gross errors refer to sparse corruptions
whose magnitudes are much bigger than those of their vicinity.
In [29], the authors replace the �2-norm with the �p-norm
(0 < p < 2) to achieve robustness, and have proposed two
algorithms, namely, iterative �p-regression and �p-alternating
direction method of multipliers (�p-ADMM). The �p-norm
has also been applied in low-rank tensor completion and
robust PCA in [8] and [30], respectively. Although they attain
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outstanding performance in the presence of outliers, there are
two open questions. The first issue is to decide p because
its appropriate value varies with the intensity of impulsive
noise. Second, when 0 < p < 1, �p-norm is non-convex
and non-smooth, which results in a challenging optimization
problem. Furthermore, a new surrogate of �0-‘norm’ is devised
to achieve low-rank recovery and combat outliers, but it
introduces two additional user-defined parameters [31] and
it is vital to choose their proper values. Two new robust
loss functions are put forth in [32] to reduce the impact
of outliers on the recovery performance, and they use a
distributed optimization framework to tackle matrix comple-
tion. Huber function [33] as a common M-estimator is also
applied on matrix completion to resist against gross errors
and majorization minimization (MM) algorithm is used to
jointly estimate its parameter vector and scale. Moreover,
robust matrix factorization based on MM (RMF-MM) [34] is
developed. The authors replace the �2-norm with the �1-norm
to attain robustness, find a convex surrogate to relax the non-
smooth and non-convex objective function, and then employ
the MM technique as the solver. Recently, He et al. [37]
adopt the non-convex Welsch cost function to handle outliers,
and propose two robust matrix completion algorithms, i.e.,
half-quadratic power factorization (HQ-PF) and half-quadratic
alternating steepest descent (HQ-ASD). Furthermore, Bayesian
methods, including variational Bayesian matrix factoriza-
tion based on �1-norm (VBMFL1) [35] and Bayesian esti-
mator for noisy matrix completion (BENMC) [36], are
suggested.

Truncated-quadratic loss function is non-convex and non-
smooth, and has been utilized as the regularization term for
edge-detection and denoising [38], [39], [43]. However, it is
exploited as a non-convex loss function to resist outliers
in this paper. Research results [32], [33], [37], [40] have
shown that compared with the convex loss functions such
as �1-norm and Huber function, whose influence functions
are not redescending, the non-convex penalty function can
suppress large outliers well. Intuitively, truncated-quadratic
function as the cost function is more robust than the �p-norm
and Huber function especially for large outliers, because the
corresponding weights in the former will be assigned to zero.
Besides, it is more preferable that loss functions only assign
smaller weights for outliers, while keeping the weights of
normal data fixed. Compared with other non-convex loss
functions [41], i.e., Cauchy and Welsch, which down-weigh
all observations including uncorrupted data, the truncated-
quadratic function is better to combat outliers since it only
down-weighs the entries contaminated by outliers. However,
its non-smoothness and non-convexity create challenges in the
optimization process.

In this study, to avoid full SVD calculation and resist
gross errors, the factorization idea and truncated-quadratic cost
function are jointly leveraged for robust matrix completion.
Moreover, since it is difficult for MM technique to find the
surrogate function [42], half-quadratic optimization (HO) the-
ory [43], [44] is utilized. In order to seek the equivalent form
of the original optimization problem, a new auxiliary term is

introduced in the HO formulation to transform the non-convex
and non-smooth problem into a tractable quadratic optimiza-
tion problem, which permits to derive an efficient algorithm
based on alternating minimization between the matrix entries
and auxiliary variable. It is worth pointing out that from the
HO theory, the truncated-quadratic function can be converted
into two different optimization forms, namely, the additive
and multiplicative formulations. Accordingly, two algorithms
are devised, called HO based on additive form for truncated-
quadratic function (HOAT) and HO based on multiplicative
form for truncated-quadratic function (HOMT). In summary,
the main contributions of our paper are as follows:

1) We derive the dual function and minimizer function of
the truncated-quadratic function based on the HO theory.

2) We devise two robust factorization based matrix com-
pletion algorithms, namely, HOAT and HOMT, to resist
gross errors. In particular, the observations detected as
outliers are considered as missing entries in HOMT.

3) Experiments demonstrate that compared to the com-
peting methods, the proposed algorithms exhibit bet-
ter recovery performance for different real-world data
including gray-scale and hyperspectral images, in the
presence of outliers and Gaussian noise.

The remainder of this paper is organized as follows.
In Section II, notations are provided, and matrix completion
methods as well as HO theory are reviewed. The two devel-
oped approaches and their theoretical analysis, are presented
in Section III. Section IV discusses the numerical simulation
results based on synthetic data and real images. Finally,
conclusions are drawn in Section V.

II. PRELIMINARIES

In this section, notations, related works and HO theory are
reviewed.

A. Notations

Italic, bold lower-case and bold upper-case letters denote
scalars, vectors and matrices, respectively. The i th entry of
a vector aaa is represented by ai , and the (i, j) element of a
matrix AAA is denoted by AAAij . In particular, a matrix of zeros
and ones are signified by 000 and 111, respectively. Besides,
� ⊂ {1, . . . , m} × {1, . . . , n} is used to denote the index set
of the observed entries of AAA, �c is the complement of �, and
(·)� is a projection operator, defined as:

[AAA�]i j =
{

AAAij , if (i, j) ∈ �

0, if (i, j) ∈ �c

In addition, ‖aaa‖2 = √
aaaT aaa is the �2-norm of aaa ∈ R

m , ‖AAA‖F =√∑m
i=1

∑n
j=1 AAA2

i j is the Frobenius norm of AAA ∈ R
m×n , and

vec(AAA) is a vector generated via vectorizing AAA. Moreover,
AAA j,: and AAA:, j represent the j th row and j th column of AAA,
respectively. Furthermore, |a| stands for the absolute value of
a, while |I| is the cardinality of the set I. Finally, the pseudo-
inverse operator and transpose operator are denoted by (·)† and
(·)T , respectively.
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B. Related Work

1) Matrix Completion: To obtain a low-rank matrix MMM to
match the incomplete matrix XXX�, a direct formulation is [14]:

min
MMM

rank(MMM), s.t. MMM� = XXX� (1)

However, (1) is a NP-hard optimization problem. Thereby,
nuclear norm [15] is suggested, leading to

min
MMM

‖MMM‖∗, s.t. MMM� = XXX� (2)

where the nuclear norm ‖MMM‖∗ is the sum of singular val-
ues of MMM . Nevertheless, it requires performing full SVD at
each iteration, which limits its application on large-size data.
To avoid full SVD calculation, matrix factorization [22] is
applied, resulting in:

min
U,VU,VU,V

‖XXX� − (UUUVVV )�‖2
F (3)

where UUU ∈ R
m×r and VVV ∈ R

r×n are the two small size
matrices with rank r � min(m, n). Apparently, MMM = UUUVVV
has low rank. However, its performance will be degraded in
the presence of outliers.

On the other hand, in order to achieve robustness, a mod-
ified model [29] based on (3) via employing �p-norm with
0 < p < 2, is proposed:

min
U,VU,VU,V

‖XXX� − (UUUVVV )�‖p
p (4)

For the entry (i, j) ∈ � corrupted by outliers, its residual error
e = XXX i, j − MMMi, j in the �p-norm space is less than the error in
the Frobenius norm space, i.e., |e|p < |e|2 with 0 < p < 2.
Thus, (4) can reduce the impact of outliers, and the �p-norm
is more capable to resist gross errors than the Frobenius norm.

In addition, robust M-estimation based matrix completion
method [33] is developed, formulated as:

min
U,VU,VU,V

‖XXX� − (UUUVVV )�‖σ,c (5)

where ‖XXX� − (UUUVVV )�‖σ,c = ∑
(i, j ) ρ

(
XXXi, j −(UUUVVV )i, j

σ

)
with

(i, j) ∈ �, and ρ(·) is the Huber function:

ρ(x) =

⎧⎪⎨⎪⎩
1

2
x2, |x | ≤ c

c|x | − 1

2
c2, |x |>c

(6)

However, Huber function is a ‘monotone M-estimator’ [49],
namely, large outliers still affect its robustness, but the effect
remains bounded.

2) Half-Quadratic Theory: HO is an efficient tool for
convex and non-convex optimization based on the conjugate
function theory. Let φ(x) denote a loss function that satisfies
the conditions of HO theory [43], [44], [45], and φ(x) can be
reformulated as the following model:

φ(x) = inf
y

Q(x, y) + ϕ(y) (7)

where y is an introduced auxiliary variable, ϕ(y) is the dual
function of φ(x), and Q(x, y) is a quadratic function of x ,
which has two forms:

Q(x, y) = (x − y)2

2
, y ∈ R (8)

and

Q(x, y) = y · x2

2
, y ∈ R+ (9)

Accordingly, φ(x) has two expressions, that is, the additive
and multiplicative forms:

φ(x) = inf
y

(x − y)2

2
+ ϕ(y) (10)

φ(x) = inf
y

y · x2

2
+ ϕ(y) (11)

In addition, for a fixed x in (10) and (11), there exists the
corresponding minimizer function δA(x) and δM(x):

δA(x) := arg inf
y

(x − y)2

2
+ ϕ(y) (12)

and

δM(x) := arg inf
y

y · x2

2
+ ϕ(y). (13)

Moreover, if δA(x) and δM(x) exist, the minimization of loss
function φ(x) is equal to:

min
x,y

Q(x, y) + ϕ(y) (14)

which can be solved by alternating minimization. In other
words, for a given x , the optimal solution to y is obtained via
(12) or (13). While given y, (14) can also be easily solved
since it is a quadratic optimization problem.

III. PROPOSED ALGORITHMS

In this section, we first derive the minimizer functions of the
additive and multiplicative forms according to the definition of
HO theory, and their corresponding robust matrix completion
methods are then devised. In particular, the convergence and
computational complexity of the developed algorithms are
analyzed.

A. Robust Matrix Completion via Additive Form

The truncated-quadratic function has the form of [38]:

φ(x) =

⎧⎪⎪⎨⎪⎪⎩
x2

2
, |x | < e

e2

2
, |x | ≥ e

(15)

Fig. 1 plots the truncated-quadratic function and typical
loss functions. It is seen that the truncated-quadratic function
expresses a wish to suppress big outliers, compared with other
functions. However, it is non-convex and non-smooth, which
results in an intractable optimization problem. In this study,
HO theory is exploited to transform (15) into (10) via adding
an auxiliary variable y. According to Section II-B.2, we obtain
the minimizer function of the additive form of (15) first, i.e.,

δA(x) =
{

0, |x | < e

x, |x | ≥ e
(16)

whose derivation is shown in Appendix A.
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Fig. 1. Different loss functions with c = 2 in Huber function and e = 2 in
truncated-quadratic function.

Motivated by (4) and (5), the truncated-quadratic function is
adopted to achieve robustness in the presence of gross errors,
formulated as:

min
UUU ,VVV

‖XXX� − (UUUVVV )�‖φ (17)

Since ‖ · ‖φ is an entry-wise operator, (17) can be reformu-
lated as:

min
UUU ,VVV

∑
(i, j )∈�

φ
(
XXX i, j − (UUUVVV )i, j

)
(18)

Based on the additive form of HO theory in (10), (18)
becomes:

min
UUU ,VVV ,NNN

∑
(i, j )∈�

1

2

(
XXXi, j − (UUUVVV )i, j − NNN i, j

)2 + ϕ(NNNi, j ) (19)

where NNNi, j is the auxiliary variable to model the outlier
component of noise, and is determined by the minimizer
function δA(·) in (16). Besides, ϕ(NNNi, j ) is the regularization
term, whose expression is provided in Appendix A. We denote
ϕ(NNN) = ∑

(i, j ) ϕ(NNNi, j ), and then (19) can be rewritten as the
matrix form:

min
UUU ,VVV ,NNN

1

2
‖XXX� − (UUUVVV )� − NNN�‖2

F + ϕ(NNN�) (20)

It is worth mentioning that (20) has three variables without
constraints, and block coordinate descent (BCD) [46], [47] is
adopted to find its solutions, whose idea is to optimize one
factor while fixing the remaining two factors. Thus, (20) can
be decomposed as the following three subproblems:

UUUk+1 = arg min
UUU

1

2

∥∥∥XXX� −
(
UUUVVV k

)
�

− NNNk
�

∥∥∥2

F
(21)

VVV k+1 = arg min
VVV

1

2

∥∥∥XXX� −
(
UUUk+1VVV

)
�

− NNN k
�

∥∥∥2

F
(22)

NNNk+1 = arg min
NNN

1

2

∥∥∥XXX� −
(
UUUk+1VVV k+1

)
�

− NNN�

∥∥∥2

F
+ϕ(NNN�)

(23)

It is easy to know that given VVV k and NNN k , (21) can be
decoupled as m subproblems with respect to (w.r.t.) uuui for
i = 1, . . . , m:

uuuk+1
i = arg min

uuui

1

2

∥∥∥XXX i,Ji − uuuT
i VVV k

Ji
− NNN k

i,Ji

∥∥∥2

2
(24)

where uuuT
i represents the i th row of UUU , i.e.,

UUU =

⎡⎢⎢⎢⎢⎣
uuuT

1

uuuT
2
...

uuuT
m

⎤⎥⎥⎥⎥⎦ (25)

and Ji is denoted as the set of column indices of the
observed entries in the i th row of XXX with

∑m
i=1 |Ji | = |�|.

Herein, we provide an example to determine Ji . If XXXi,: =[
xi,1 0 xi,3 0 xi,5

]
, then Ji = {1, 3, 5}, and Ji 2 = 3. Besides,

VVV k
Ji

∈ R
r×|Ji | contains |Ji | columns indexed by Ji , namely,

VVV k
Ji

=
[
VVV :,Ji 1

VVV :,Ji 2
· · · VVV :,Ji |Ji |

]
(26)

where Ji j stands for the j th entry of Ji with j = 1, . . . , |Ji |.
Similarly,

XXX i,Ji =
[
XXXi,Ji 1

XXX i,Ji 2
· · · XXX i,Ji |Ji |

]
(27)

and

NNN k
i,Ji

=
[
NNN k

i,Ji 1
NNN k

i,Ji 2
· · · NNN k

i,Ji |Ji |

]
(28)

Thus, (24) is rewritten as:
uuuk+1

i = arg min
uuui

1

2

∥∥∥DDDk
i,Ji

− uuuT
i VVV k

Ji

∥∥∥2

2
(29)

where DDDk = XXX − NNNk . It is clear that (29) is a least squares
problem, whose closed-form solution is:

uuuk+1
i =

((
VVV k

Ji

)T
)†

(DDDk
i,Ji

)T (30)

and its computational complexity is O(|Ji |r2).
Problem (22) has a similar structure to (21), and hence

can be solved in an analogous manner. Given UUUk+1 and NNNk ,
it is easy to observe that (22) can be decoupled w.r.t. vvv j for
j = 1, . . . , n, leading to:

vvvk+1
j = arg min

vvv i

1

2

∥∥∥DDDk
I j , j − UUUk+1

I j
vvv j

∥∥∥2

2
(31)

where vvv j is the j th column of VVV , I j is the set of row
indices of the observed entries in the j th column of XXX ,
and

∑n
j=1 |I j | = |�|. Apparently, (31) is also a least squares

problem, and its closed-form solution is:

vvvk+1
j =

(
UUUk+1

I j

)†
DDDk

I j , j (32)

whose computational complexity is O(|I j |r2).
Finally, given UUUk+1 and VVV k+1, (23) is equal to:

NNN k+1 = arg min
NNN

1

2

∥∥∥RRRk+1
� − NNN�

∥∥∥2

F
+ ϕ(NNN�) (33)
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where RRRk+1 = XXX − UUUk+1VVV k+1 represents the residual infor-
mation in the (k + 1)th iteration. In accordance to the HO
theory, the solution to NNN k+1 is:

NNN k+1 = δA(RRRk+1) (34)

As shown in (16), the minimizer function δA(x) depends on
the parameter e which controls robustness. That is to say, any
entry in RRR� bigger than e, will be considered as outliers. For
a smaller e, (19) will reduce the impact of all the outliers,
but also mistakenly regard the ‘normal’ entries as outliers.
While for a larger e, it is possible that some outliers remain
in the data, leading to the recovery performance degradation.
For ‘normal’ entries, they refer to the elements in the data
corrupted by zero-mean Gaussian noise, which are not the
gross errors. Analogous to [48], we take the following strategy
to choose the value of e:

ek = min
{
ξσ k , ek−1

}
(35)

where ξ>0 is a constant and σ k is the robust normalized
median absolute deviation of the vectorized RRR�, i.e.,

σ k = 1.4815 × Med(|vec(RRRk
�) − Med(vec(RRRk

�))|) (36)

with Med(·) being the sample median operator [49]. Besides,
in order to achieve reliable recovery, (3) is first handled
to provide a good initialization for the calculation of (21),
although it is vulnerable to outliers, which is a similar strategy
adopted in [37]. Actually, the solutions to UUU and VVV in (3) are
same as those of (21) and (22), respectively, when NNN = 000 at
each iteration. Hence, the initialized estimates of UUU and VVV
in (3) are computed as:

uuuk+1
i =

((
VVV k

Ji

)T
)†

XXX T
i,Ji

, i = 1, . . . , m (37)

vvvk+1
j =

(
UUUk+1

I j

)†
XXXI j , j , j = 1, . . . , n (38)

Algorithm 1 summarizes the detailed optimization proce-
dure. As stated in [29], the convergence rate to finding the
solutions to (37) and (38) is fast and it is not necessary to
obtain the optimal solutions since (37) and (38) are only
used to provide initialization for (30) and (34), not the final
results. Thus, a small number of Ip is enough, specifically,
Ip = 3 is employed in our algorithm. In addition, Algorithm
1 will be terminated when its iteration number exceeds Im

and/or κ = ‖XXX� − MMMk
� − NNNk‖F /‖XXX�‖F is less than the

pre-set threshold value η>0. Note also that, the calculation
of uuui with i = 1, . . . , m in (30) and vvv j with j = 1, . . . , n
in (32) are independent, and hence distributed and paral-
lel realizations can be exploited to shorten computational
time. Finally, the convergence of Algorithm 1 is analyzed
in the following proposition. We first define L(UUU ,VVV , NNN ) =
1
2 ‖XXX� − (UUUVVV )� − NNN‖2

F + ϕ(NNN) as the objective function.
Proposition 1: The sequence {L(UUUk,VVV k, NNNk)} produced by

Algorithm 1 is convergent.
Proof: Since ek is updated at each iteration, we pro-

vide the proof via discussing the following two cases. First,
when updating ek → ek+1, ϕ(NNN) in L(UUU ,VVV , NNN ) is the
only component related to e, and to make the development

clearer, we write ϕ(NNN , e) = ϕ(NNN). Besides, ϕ(NNN , e) is sep-
arable, namely, ϕ(NNN , e) = ∑

(i, j ) ϕ(NNNi, j , e). Then, we have
∂ϕ(NNN i, j ,e)

∂e > 0 via taking the partial derivative of ϕ(NNNi, j , e)
w.r.t. e:

∂ϕ(NNNi, j , e)

∂e
=
{

|NNN i, j |, |NNN i, j | < e

e, |NNN i, j | ≥ e
(39)

and we obtain:
∂L
∂e

= ∂
∑

i, j ϕ(NNNi, j , e)

∂e
=
∑
i, j

∂ϕ(NNNi, j , e)

∂e
> 0 (40)

Thus, L(UUU ,VVV , NNN ) increases monotonically w.r.t. e, and the
updating rule in (35) makes e non-increasing. Therefore,
{L(UUUk,VVV k, NNN k)} is non-increasing when updating ek → ek+1.

Second, after obtaining ek+1, since alternating minimization
is used at each step in Algorithm 1, we have:
L(UUU k+1,VVV k+1, NNN k+1)

= min
VVV

1

2

∥∥∥XXX� −
(
UUUk+1VVV

)
�

− NNN k+1
∥∥∥2

F
+ ϕ(NNN k+1)

≤ min
UUU

1

2

∥∥∥XXX� −
(
UUUVVV k

)
�

− NNN k+1
∥∥∥2

F
+ ϕ(NNNk+1)

≤ min
NNN

1

2

∥∥∥XXX� −
(
UUUkVVV k

)
�

− NNN
∥∥∥2

F
+ ϕ(NNN)

≤ 1

2

∥∥∥XXX� −
(
UUUkVVV k

)
�

− NNN k
∥∥∥2

F
+ ϕ(NNN k)

= L(UUUk,VVV k, NNN k) (41)

which means that L(UUU ,VVV , NNN ) is non-increasing. Since
L(UUU ,VVV , NNN ) is lower bounded by 0, thus the sequence
{L(UUUk,VVV k, NNN k)} generated by Algorithm 1 is convergent. �

Algorithm 1 HOAT
Input: Incomplete matrix XXX�, index set �, maximum allow-

able iteration numbers Ip and Im , and tolerance parameter
η
Initialize: Generate a standard Gaussian matrix VVV 0 ∈ R

r×n ,
and determine {Ji }m

i=1 and {I j }n
j=1 according to �.

for p = 1, 2, . . . , Ip do
// Fix VVV p−1, optimize UUU
Find UUU p according to (37)
// Fix UUU p , optimize VVV
Find VVV p according to (38)

end for
Set UUU0 = UUU p and VVV 0 = VVV p

for k = 1, 2, · · · , Im do
Calculate ek according to (35)
// Fix UUUk−1 and VVV k−1, optimize NNN
Find NNNk according to (34)
// Fix VVV k−1 and NNNk , optimize UUU
Find UUUk according to (30)
// Fix UUUk and NNN k , optimize VVV
Find VVV k according to (32)
Stop, if a termination condition is satisfied.

end for
Output: MMM = UUUkVVV k .
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B. Robust Matrix Completion via Multiplicative Form

For the multiplicative form of truncated-quadratic function
in (11), we derive its minimizer function as (see Appendix B):

δM(x) =
{

1, |x | < e

0, |x | ≥ e
(42)

According to (11), (18) is equal to:
min

UUU ,VVV ,WWW

∑
(i, j )∈�

1

2
WWW i, j

(
XXX i, j − (UUUVVV )i, j

)2 + ϕ(WWW i, j ) (43)

where WWW i, j is a new auxiliary variable to assign the weights
to different entries, and its value depends on the minimizer
function δM(·) in (42). In addition, we define ϕ(WWW ) =∑

(i, j ) ϕ(WWW i, j ), then (43) can be rewritten as:
min

UUU ,VVV ,WWW

1

2

∥∥∥√WWW � ◦ (XXX� − (UUUVVV )�)
∥∥∥2

F
+ ϕ(WWW �) (44)

where
√

(·) is the element-wise square root operator, and ◦
denotes the entry-wise product. In particular, WWW �c = 000. BCD
is also used to seek the solutions to (44), and thus we can
decompose (44) into three subproblems:

UUUk+1 = arg min
UUU

1

2

∥∥∥∥√WWW k
� ◦

(
XXX� −

(
UUUVVV k

)
�

)∥∥∥∥2

F
(45)

VVV k+1 = arg min
VVV

1

2

∥∥∥∥√WWW k
� ◦

(
XXX� −

(
UUUk+1VVV

)
�

)∥∥∥∥2

F
(46)

WWW k+1 = arg min
WWW

1

2

∥∥∥√WWW� ◦
(

XXX� −
(
UUUk+1VVV k+1

)
�

)∥∥∥2

F

+ϕ(WWW�) (47)

Note that (45) and (46) are weighted least squares problems,
whose computational complexity is high since their weights
are updated via (47) at each iteration. However, it is easy to
observe that the entry of WWW k is either ‘0’ or ‘1’, thus we
can set �̃k = WWW k as the current observation index set of XXX ,
that is to say, the observations contaminated by outliers are
taken as missing entries. Accordingly, (45), (46) and (47) are
reformulated as:

UUUk+1 = arg min
UUU

1

2

∥∥∥XXX �̃k −
(
UUUVVV k

)
�̃k

∥∥∥2

F
(48)

VVV k+1 = arg min
VVV

1

2

∥∥∥XXX �̃k −
(
UUUk+1VVV

)
�̃k

∥∥∥2

F
(49)

�̃k+1 := arg min
WWW

1

2

∥∥∥√WWW � ◦
(

XXX� −
(
UUUk+1VVV k+1

)
�

)∥∥∥2

F
+ϕ(WWW�) (50)

To solve (48)-(50), we first recall that J̃ k
i and Ĩk

j are the set
of column indices of the observed entries in the i th row of XXX �̃k

and the set of row indices of the observed entries in the j th
column of XXX �̃k at the kth iteration, respectively. Problem (48)
can be decomposed as the following m subproblems:

uuuk+1
i = arg min

uuui

1

2

∥∥∥∥XXXi,J̃ k
i

− uuuT
i VVV k

J̃ k
i

∥∥∥∥2

2
(51)

where i = 1, . . . , m, and the solution is:

uuuk+1
i =

((
VVV k

J̃ k
i

)T
)†

XXX T
i,J̃ k

i
(52)

whose computational complexity is O(|J̃ k
i |r2).

Similarily, (49) can be separated into n independent
subproblems:

vvvk+1
j = arg min

vvv j

1

2

∥∥∥∥XXX Ĩk
j , j − UUUk+1

Ĩk
j

vvv j

∥∥∥∥2

2
(53)

where j = 1, . . . , n, and its solution is:

vvvk+1
j =

(
UUUk+1

Ĩk
j

)†

XXX Ĩk
j , j (54)

whose computational complexity is O(|Ĩk
j |r2). Given UUUk+1

and VVV k+1, (50) can be rewritten as:
WWW k+1 = arg min

WWW

1

2

∥∥∥√WWW � ◦ RRRk+1
�

∥∥∥2

F
+ ϕ(WWW �) (55)

According to (13), its solution is:
�̃k+1 = WWW k+1 = δM

(
RRRk+1

�

)
(56)

Algorithm 2 summarizes the matrix completion procedure
based on HOMT. We take the same strategy as Algorithm 1 to
terminate Algorithm 2 and determine its parameters including
Ip , Im , η and e. In addition, we use the solution to (3) as
the initialization for (48) and (50). It is worth noting that
the processes of finding the solutions to different uuui in (52)
for i = 1, . . . , m and vvv j in (54) for j = 1, . . . , n, are
independent of each other, (56) is entry-wise operator, and
hence those steps can be calculated in parallel to reduce the
computational time. Furthermore, we denote C(UUU ,VVV ,WWW ) =
1
2

∥∥√WWW � ◦ (XXX� − (UUUVVV )�)
∥∥2

F + ϕ(WWW �), and the convergence
analysis of Algorithm 2 is provided in Proposition 2.

Algorithm 2 HOMT
Input: Incomplete matrix XXX�, index set �, maximum allow-

able iteration numbers Ip and Im , and tolerance parameter
η
Initialize: Generate a standard Gaussian matrix VVV 0 ∈ R

r×n ,
and find {Ji }m

i=1 and {I j }n
j=1 according to �.

for p = 1, 2, . . . , Ip do
// Fix VVV p−1, optimize UUU
Find UUU p according to (37)
// Fix UUU p , optimize VVV
Find VVV p according to (38)

end for
Set UUU0 = UUU p and VVV 0 = VVV p

for k = 1, 2, · · · , Im do
Calculate ek according to (35)
// Fix UUUk−1 and VVV k−1, optimize �̃
Find �̃k according to (56)
Update J̃ k

i and Ĩk
j according to �̃k

// Fix VVV k−1 and �̃k , optimize UUU
Find UUUk according to (52)
// Fix UUUk and �̃k , optimize VVV
Find VVV k according to (54)
Stop, if a termination condition is satisfied.

end for
Output: MMM = UUUkVVV k .
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Proposition 2: The sequence {C(UUUk,VVV k,WWW k)} generated
by Algorithm 2 converges.

Proof: Similar to Proposition 1, since ϕ(WWW ) in
C(UUU ,VVV ,WWW ) is the only component related to e and is sep-
arable, we first obtain:

∂ϕ(WWW i, j , e)

∂e
=
{

(1 − WWW i, j )e, 0 ≤ WWW i, j < 1

0, y ≥ 1
(57)

and then we have:
∂L
∂e

= ∂
∑

ϕ(NNNi, j , e)

∂e
=
∑ ∂ϕ(NNNi, j , e)

∂e
≥ 0 (58)

Thus, for the non-increasing ek+1 in (35), C(UUU,VVV ,WWW ) is
non-increasing.

Moreover, when ek has been updated, since BCD is utilized
to find the solution to (44), hence we have:
C(UUUk+1,VVV k+1,WWW k+1)

= min
VVV

1

2

∥∥∥∥√WWW k+1
� ◦

(
XXX� −

(
UUUk+1VVV

)
�

)∥∥∥∥2

F
+ ϕ(WWW k+1

� )

≤ min
UUU

1

2

∥∥∥∥√WWW k+1
� ◦

(
XXX� −

(
UUUVVV k

)
�

)∥∥∥∥2

F
+ ϕ(WWW k+1

� )

≤ min
WWW

1

2

∥∥∥√WWW � ◦
(

XXX� −
(
UUUkVVV k

)
�

)∥∥∥2

F
+ ϕ(WWW �)

≤ 1

2

∥∥∥∥√WWW k
� ◦

(
XXX� −

(
UUUkVVV k

)
�

)∥∥∥∥2

F
+ ϕ(WWW k

�)

= C(UUUk,VVV k,WWW k) (59)

implying that C(UUU ,VVV ,WWW ) is non-increasing with a lower
bound, thus the sequence {C(UUUk,VVV k,WWW k)} produced via
Algorithm 2 converges. �

C. Computational Complexity

Although both Algorithms 1 and 2 introduce an auxiliary
variable and utilize BCD to solve their corresponding opti-
mization problems, they have different computational costs.
For Algorithm 1, the complexity of least squares contains
the cost of solving (21) by (30) and the cost of solving
(22) by (32). The resultant complexity is

∑m
i=1 O(|Ji |r2) +∑n

j=1 O(|I j |r2) = O (2|�|r2
)

at each iteration. Besides, the
cost of solving (23) is O (|�|). Assuming that Algorithm 1
requires K1 iterations to converge, its total computational
complexity is O (K1(2r2 + 1)|�|). Similarly, for Algorithm 2,
the complexity of least squares is

∑m
i=1 O(|J̃ k

i |r2) +∑n
j=1 O(|Ĩk

j |r2) = O (2|�̃k|r2
)

in the kth iteration, which
is not bigger than O (2|�|r2

)
due to |�̃k| ≤ |�| at each

iteration, while the cost of solving (47) is O (|�|). Accord-
ingly, the total computational complexity of Algorithm 2 is∑K2

k=1 O
(
2|�̃k|r2 + |�|), where K2 is the iteration number

for convergence. As analyzed in [45], the iteration number of
the multiplicative form is less than that of the additive form,
and hence the running time of the multiplicative form will be
less than that of the additive form.

IV. RESULTS

In this section, compared with the state-of-the-art robust
matrix completion methods, namely, �1-ADMM [29], RMC-
Huber [33], RMF-MM [34], VBMFL1 [35] and HQ-PF [37],
we perform experiments on synthetic data, real gray-scale and
hyperspectral images, to show the effectiveness of the two
proposed algorithms. For the parameters in the competing
algorithms, the recommended setting is adopted, and if it is not
available, we select the best parameters through experiments.
In addition, we set Im = 50 and η = 1×10−6 for the developed
methods. All the experiments are conducted on a computer
with 3.2 GHz CPU and 16 GB memory.

A. Results of Synthetic Random Data

The experimental strategy in [29], [32], and [37] is adopted.
We first generate two random matrices UUU ∈ R

m×r and
VVV ∈ R

r×n , whose entries satisfy the standard Gaussian dis-
tribution, and then construct the synthetic matrix as XXX = UUUVVV .
For convenience, we set m = n, and r = m/50. Unless
stated otherwise, m = 400, and the observation ratio is 50%.
The incomplete matrix XXX� is perturbed via Gaussian mixture
model (GMM). The probability density function of GMM is:

pv(v) = 1 − c√
2πσ1

exp

(
− v2

2σ 2
1

)
+ c√

2πσ2
exp

(
− v2

2σ 2
2

)
(60)

where σ 2
1 and σ 2

2 are variances with σ 2
1 � σ 2

2 . Besides, c
controls the ratio of outliers, namely, a large value of c gives
rise to higher ratio of outliers. In our experiments, to model
gross errors, we set σ 2

2 = 100σ 2
1 and c = 0.1. Thus, the

signal-to-noise ratio (SNR) is given by:

SNR = ‖XXX�‖2
F

|�| ((1 − c)σ 2
1 + cσ 2

2

) (61)

In addition, we set SNR = 10 dB unless stated otherwise.
To evaluate the recovery performance, the root mean square
error (RMSE) is employed, defined as:

RMSE = ‖XXX − MMM‖F√
m × n

(62)

which is calculated based on 100 independent runs. It is easy
to understand that a smaller value of RMSE implies a better
recovery performance.

Fig. 2 plots RMSE versus iteration number by the seven
methods, namely, HOAT, HOMT, VBMFL1, RMC-Huber,
�1-ADMM, RMF-MM and HQ-PF, at SNR = 10 dB. It is
observed that the recovery accuracy of our algorithms and
HQ-PF is higher than that of the remaining schemes. It is
because the penalty functions of the former are non-convex,
while those of the latter are convex. Compared with �2-norm,
although �1-norm and Huber function can reduce the influence
of outliers, their ability to resist outliers is restricted especially
for large outliers. Besides, the reason why HOAT and HOMT
are superior to HQ-PF is that the latter changes the weights of
‘normal’ data, even though they all utilize the dual function
and Frobenius norm to resist outliers and suppress Gaussian
noise, respectively. Compared with the competing methods,
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Fig. 2. RMSE versus iteration number.

Fig. 3. RMSE versus percentage of observations.

the proposed algorithms not only resist gross errors, but also
do not change the weights of ‘normal’ data.

Fig. 3 depicts the RMSE versus percentage of observations.
We easily see that the HOAT, HOMT and HQ-PF have better
recovery performance for all observation percentages. It is
because they adopt non-convex cost functions to resist gross
errors, and researches in [33] and [40] show that non-convex
penalty functions have a higher capability to resist big outliers
than convex penalty functions. The impact of SNR on different
algorithms is plotted in Fig. 4. We see that the RMSEs of all
the algorithms decrease as SNR increases, and our algorithms
perform the best.

Then, the relationship between the RMSE and matrix col-
umn m is investigated. As can be seen from Fig. 5, our
algorithms have the best recovery performance for all m,
although the RMSEs of all the methods increase with m.
Compared with HOAT, HOMT and HQ-PF, large outliers
still affect the recovery accuracy of VBMFL1, RMC-Huber,
�1-ADMM and RMF-MM, since they utilize convex functions,
i.e., �1-norm and Huber function, as the penalties. In addition,
we present the average runtime of different approaches in
Fig. 6. It is easy to see that the computational cost of HOMT

Fig. 4. RMSE versus SNR in GMM noise.

Fig. 5. RMSE versus m.

Fig. 6. Running time versus m.

is the lowest among all the algorithms, while RMF-MM is the
most time-consuming, which is approximately two orders of
magnitude slower than HOAT and HOMT. Besides, the two
proposed algorithms are at least an order of magnitude faster
than HQ-PF though they all use non-convex cost functions and
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Fig. 7. RMSE surface versus ξ and m.

Fig. 8. RMSE versus rank r .

alternating minimization to find the solutions. In particular,
the running time of HOAT is longer than that of HOMT, which
is consistent with our analysis in Section III-C.

Fig. 7 depicts the selection of ξ in (35). We see that the
two proposed approaches can work well in a wide range of ξ .
In particular, when ξ is very small, our algorithms have larger
RMSEs, because a smaller ξ will cause them wrongly take the
‘normal’ values as outliers, leading to a large degradation in
recovery performance. While a much bigger value of ξ also
gives rise to performance degradation since it may consider
outliers as ‘normal’ values. When 2.5 ≤ ξ ≤ 4, HOAT and
HOMT have a higher recovery accuracy, and a larger value
of ξ may contain more useful details if all the outliers are
excluded. Besides, it is observed that the selection of ξ is not
sensitive to the matrix size m.

Finally, since our algorithms require knowing the rank
information, it is necessary to provide a method to estimate
its value. Similar to [29], cross-validation is used. In our
experiments, the matrix column length is m = 400 and the
true rank is set to 8. Furthermore, we randomly choose 95%
observed entries as the training set and the remaining 5% are
considered as the test data. Fig. 8 plots the RMSE versus
rank r . We can see that all the methods can correctly estimate
the matrix rank via cross-validation. It is worth noting that

when the estimated rank is less than the true rank, it will
bring about a big recovery error.

B. Application on Image Inpainting

In some cases, the received images are incomplete because
of the damage of photosensitive devices or the occlusion of
other objects. Besides, the images may be contaminated by
Gaussian noise and impulsive noise during the process of
wireless transmission. In this section, we apply the robust
matrix completion algorithms on image inpainting, and the
images in [50] and [51] are tested. To model outliers, a mixture
of zero-mean Gaussian noise and impulsive noise is adopted.
The standard deviation of zero-mean Gaussian noise is set to
be 0.02, and the impulsive noise is generated by the built-in
command of ‘imnoise (III , ‘salt & pepper’, ρ)’ in MATLAB,
where III is the incomplete matrix, and ρ is the normalized
noise intensity. The relationship between ρ and SNR is
ρ = 1/SNR and SNR = 10 dB. Moreover, to measure the
recovery performance of different algorithms, two evaluation
indices, namely, peak SNR (PSNR) and structural similar-
ity index measure (SSIM), are employed, and we directly
use the built-in commands ‘psnr (recovered, original)’ and
‘ssim (recovered, original)’ in MATLAB for their calculation,
respectively. In particular, all the algorithms use the same
rank, and ξ = 4 in the proposed algorithms. Furthermore,
we investigate the impact of three kinds of masks [50], that
is, random mask, text mask and block mask, on robust matrix
completion, and all the methods are tested on 10 dB Gaussian
noise, and the mixture noise for each mask.

We first address a relatively easy robust matrix completion
problem, where the missing entries of an image are uniformly
distributed. The image called Scenery in the top left of Fig. 9,
is used, whose dimensions are 300×300. Then, 20% of pixels
of the image are randomly removed and two kinds of noise,
i.e., Gaussian noise and the mixture noise, are added to the
incomplete image in order to generate two different corrupted
images. Table I tabulates the average recovery performance
and running time for the two noise types. To further evaluate
the recovery of different algorithms, their restored images in
the mixture noise are shown in Fig. 9. It is observed that com-
pared to VBMFL1, RMC-Huber, �1-ADMM and RMF-MM,
the non-convex penalty algorithms, i.e., HOAT, HOMT and
HQ-PF, achieve better reconstruction performance. Besides,
although HQ-PF has a comparable recovery accuracy with
HOAT and HOMT, it requires longer runtime. In particular,
HOAT and HOMT outperform the competing algorithms in
Gaussian noise because when there are no outliers, the penalty
function used in the former is equal to �2-norm for a bigger
value of e, compared with the remaining algorithms.

The second is the text mask where the part covered by
text in the image is considered as missing entries, which
is more common than the first scenario, but its recovery is
more difficult because the concealed regions may contain
important details. As shown in Fig. 10, the Windows image is
employed and corrupted by the text ‘Matrix’ ‘Completion’ as
the incomplete image, whose dimensions are 349×366. Again,
the same intensity of Gaussian noise and mixture noise are
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Fig. 9. Image recovery results with random mask by different algorithms.

TABLE I

PERFORMANCE COMPARISON FOR RANDOM MASK:
AVERAGE PSNR, SSIM AND RUNNING TIME

used to contaminate the incomplete image. Fig. 10 shows the
recovered images by the seven approaches in the presence of
the mixture noise. Table II shows their average PSNR, SSIM
and running time for the two noise models. We easily observe
that the HOAT and HOMT are superior to the remaining
methods in the presence of Gaussian noise and mixture noise.
Note that the competing algorithms cannot restore the light on
the wall in Fig. 10. In addition, HOMT is comparable with
HOAT in terms of PSNR and SSIM, but the former needs less
complexity.

Block mask is also difficult to tackle since the resultant
missing pattern is not random as well. The Stripe image,
whose dimensions are 272 × 271, is covered by different
shaped blocks and corrupted via the Gaussian noise or mixture
noise. Fig. 11 depicts the recovered images in the presence
of the mixture noise, and Table III shows their average
recovery performance and runtime. Again, compared with the
VBMFL1, RMC-Huber, �1-ADMM, RMF-MM and HQ-PF,

Fig. 10. Image recovery results with text mask by different algorithms.

TABLE II

PERFORMANCE COMPARISON FOR TEXT MASK:
AVERAGE PSNR, SSIM AND RUNNING TIME

TABLE III

PERFORMANCE COMPARISON FOR BLOCK MASK:
AVERAGE PSNR, SSIM AND RUNNING TIME

our algorithms are more robust to Gaussian noise and mixture
noise, producing the best recovery performance in terms of
PSNR as well as SSIM, and requiring the least computational
time.

C. Application on Hyperspectral Imaging

Hyperspectral imaging (HSI) plays an important role in
many applications including earth climate, agriculture and
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Fig. 11. Image recovery results with block mask by different algorithms.

Fig. 12. HSI restoration results for the 10th band.

urban planning [4], [5], [52]. However, it may suffer from
annoying performance degradation during the acquisition
process such as missing data and being contaminated by
Gaussian noise and impulsive noise, due to photon effects
and calibration error. Hence, there is a need to improve the

Fig. 13. HSI restoration results for the 80th band.

HSI quality prior to its subsequent processing. In this section,
Indian Pines [52] and Japser Ridge1 datasets are used, whose
dimensions are 145 × 145 pixels per band with 200 bands
and 100 × 100 pixels per band with 198 bands, respectively.
Then, we reconstruct a matrix XXX ∈ R

21025×200/R
10000×198,

whose columns comprise vectorized bands of the Indian
Pines/Japser Ridge data. Furthermore, 40% of pixels in XXX are
randomly missing, 10 dB impulsive noise produced by GMM
is added to the incomplete data, and ξ = 3 is chosen in the
proposed algorithms. Fig. 12 displays the restoration results
of different methods for the Indian Pines data. It is seen that
compared with VBMFL1, �1-ADMM, and RMF-MM, the four
methods, namely, HOAT, HOMT, RMC-Huber and HQ-PF,
achieve better recovery results and our algorithms outperform
the RMC-Huber and HQ-PF in terms of PSNR and SSIM.
Moreover, the recovered images for Japser Ridge data are
shown in Fig. 13. Again, the HOAT and HOMT are superior
to the competing algorithms due to higher PSNR and SSIM.

V. CONCLUSION

In this paper, the truncated-quadratic function, which is non-
convex and non-smooth, is employed to resist outliers and HO
theory is adopted to convert the loss function into two forms,
that is, additive and multiplicative models, via introducing an
auxiliary variable, giving rise to two easy-to-solve optimiza-
tion problems. Accordingly, we propose two robust matrix
completion algorithms, called HOAT and HOMT. In particular,

1http://lesun.weebly.com/hyperspectral-data-set.html
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the elements contaminated by outliers in HOMT are consid-
ered as the missing entries, which can reduce its computational
cost. Besides, BCD is utilized to find their solutions, and
we show that the computational complexity of the additive
form is higher than that of the multiplicative form, implying
that the latter is preferred, if possible. Furthermore, extensive
experimental results based on synthetic and real-world data
demonstrate the superiority of the HOAT and HOMT over the
competing algorithms in terms of RMSE or PSNR/SSIM, and
running time.

APPENDIX A
DERIVATION OF MINIMIZER FUNCTION

OF ADDITIVE FORM

Based on (10), we obtain the dual function of (15) [43]:

ϕ(y) = sup
x

− (x − y)2

2
+ φ(x) (63)

which is determined by φ(x). Substituting (15) in (63) yields:

ϕ(y) =

⎧⎪⎪⎨⎪⎪⎩
sup

x
− (x − y)2

2
+ x2

2
, |x | < e

sup
x

− (x − y)2

2
+ e2

2
, |x | ≥ e

(64)

and hence,

ϕ(y) =

⎧⎪⎨⎪⎩
− (|y| − e)2

2
+ e2

2
, |y| < e

e2

2
, |y| ≥ e

(65)

Then, plugging (65) into (10) leads to:
inf

y

(x − y)2

2
+ ϕ(y)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

inf
y

2(e − x)y + x2

2
, 0 ≤ y < e

inf
y

−2(e + x)y + x2

2
, −e < y < 0

inf
y

(x − y)2

2
+ e2

2
, |y| ≥ e

=

⎧⎪⎪⎨⎪⎪⎩
x2

2
, |x | < e

e2

2
, |x | ≥ e

= φ(x) (66)

We denote the minimizer function associated with (66)
as δA(x):

δA(x) := arg inf
y

(x − y)2

2
+ ϕ(y)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

arg inf
y

2(e − x)y + x2

2
, 0 ≤ y < e

arg inf
y

−2(e + x)y + x2

2
, −e < y < 0

arg inf
y

(x − y)2

2
+ e2

2
, |y| ≥ e

=
{

0, |x | < e

x, |x | ≥ e
(67)

�

APPENDIX B
DERIVATION OF MINIMIZER FUNCTION OF

MULTIPLICATIVE FORM

First, the dual function of (15) for multiplicative
form is [44]:

ϕ(y) = sup
x

− yx2

2
+ φ(x) (68)

Then, substituting (15) into (68), we have:

ϕ(y) =

⎧⎪⎪⎨⎪⎪⎩
sup

x
− yx2

2
+ x2

2
, |x | < e

sup
x

− yx2

2
+ e2

2
, |x | ≥ e

(69)

and it is easy to obtain:

ϕ(y) =
⎧⎨⎩

1 − y

2
e2, 0 ≤ y < 1

0, y ≥ 1
(70)

Hence,

inf
y

yx2

2
+ ϕ(y)

=

⎧⎪⎪⎨⎪⎪⎩
inf

y

yx2

2
+ 1 − y

2
e2, 0 ≤ y < 1

inf
y

yx2

2
, y ≥ 1

=

⎧⎪⎪⎨⎪⎪⎩
x2

2
, |x | < e

e2

2
, |x | ≥ e

= φ(x) (71)

The minimizer function δM(x) related to (71) is:

δM(x) :=

⎧⎪⎪⎨⎪⎪⎩
arg inf

y

yx2

2
+ 1 − y

2
e2, 0 ≤ y < 1

arg inf
y

yx2

2
, y ≥ 1

=
{

1, |x | < e

0, |x | ≥ e
(72)

�
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