
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 1

ℓ0-Norm Minimization based Robust Matrix
Completion Approach for MIMO Radar Target

Localization
Zhaofeng Liu, Xiao Peng Li, and Hing Cheung So, Fellow, IEEE

Abstract—In this paper, we propose a robust matrix completion
approach based on ℓ0-norm minimization for target localization
in sub-Nyquist sampled multiple-input multiple-output (MIMO)
radar. Owing to the low-rank property of the noise-free MIMO
radar transmit matrix, our approach is able to recover the
missing data and resist impulsive noise from the receive matrix.
We adopt proximal block coordinate descent and adaptive
penalty parameter adjustment by complex Laplacian kernel
and normalized median absolute deviation. We analyze the
resultant algorithm convergence and computational complexity,
and demonstrate through simulations that it outperforms existing
methods in terms of pseudospectrum, mean square error, and
target detection probability in non-Gaussian impulsive noise, even
for the full sampling schemes. While in the presence of Gaussian
noise, our approach performs comparably with other sub-Nyquist
methods.

Index Terms—target localization; MIMO radar; low-rank
matrix completion; ℓ0-norm minimization; impulsive noise; mean
square error; target detection probability.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has attracted
much attention from researchers [1]–[3]. Since colocated
antennas provide waveform diversity, the target localization
resolution of colocated MIMO radar is high [4]. In target lo-
calization, direction-of-arrival (DOA) estimation of incoming
wave is essential. Moreover, it is assumed that the DOA of
interested incoming wave is distinct within −90◦ to 90◦, and
may originate from only a few isolated directions. Therefore,
the DOA can be estimated by sparse signal processing tech-
niques like compressed sensing (CS) [5]–[8] which discretizes
the non-linear model to a sparse solution vector. Since full data
sampled with Nyquist rate are required in CS, the sampling
load of electronic components is high.

In order to reduce the sampling load, researchers have
considered sampling the receive pulse in a sampling rate less
than Nyquist rate [9]–[13]. However, the data obtained by
under-sampling are incomplete, further processing is needed to
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recover the full data. To achieve this goal, matrix completion
(MC) based MIMO radar is proposed [14]–[21]. When the
number of antennas, the length of Nyquist sampling sequence
and the number of pulses are significantly larger than the
number of targets, the noise-free transmitted data matrix is
of low-rank. Furthermore, low-rank MC can achieve noise
reduction.

Most of the existing MC approaches for colocated MIMO
radar is under an assumption that the additive noise obeys
independent and identical Gaussian distribution. In fact, non-
Gaussian impulsive noise [22], [23] widely appears in radar
[24] and communication systems [25]–[27]. Comparing with
Gaussian noise, the non-Gaussian noise has heavier tails in the
probability distribution function (PDF). The heavier tails result
in larger probability of outliers, and the power of outliers is as
many times as the power of Gaussian noise, which dominates
the overall noise power. Since the Gaussian noise usually
has white spectrum, the MC for resisting Gaussian noise
cannot suppress outliers properly. Therefore, the performance
of colocated MIMO-MC radar designed for the Gaussian noise
is remarkably degraded in impulsive noise. Recently, many
approaches are proposed to enhance the outlier-resistance per-
formance. The work of [28] solves a least absolute deviation
problem by message passing to suppress outliers, while [29]
uses the discrete Fourier transform to perform a joint Doppler
frequency and DOA estimation for the MIMO radar affected
by outliers. Moreover, to restrain outliers, [30] proposes a
kernel minimum entropy based estimator, and [31] uses a
Kalman filter. However, all of these methods do not utilize
the low-rank property of MIMO radar signals and require the
full data, which still result in huge sampling load.

In this paper, utilizing the low-rank property of colocated
MIMO radar signal, we propose an ℓ0-norm minimization MC
approach to recover the radar signal from under-sampled in-
complete data and enhance the outlier-resistance performance.
We adopt ℓ0-norm in MC to detect and suppress outliers. Our
formulation of MC is a sum of Frobenius norm for reducing
the Gaussian noise and ℓ0-norm for suppressing outliers. To
solve the resultant problem, proximal block coordinate descent
(BCD) is utilized to decompose it into three sub-problems
which can be alternately solved. Moreover, complex Laplacian
kernel and median absolute deviation are applied to detect
outliers. Thanks to the under-sampling and MC, the proposed
approach works in a low mean square error (MSE) and
high target detection probability without the requirement of
full data. Simulation results show that comparing with the
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conventional colocated MIMO-MC radar [16] designed for the
Gaussian noise, the proposed approach has superior outlier-
resistance performance in impulsive noise environment.

Our main contributions are summarized as:
1) To reduce the sampling load and enhance the robust-

ness, an ℓ0-norm minimization based MC approach is
proposed for colocated MIMO radar target localization
in possibly impulsive noise environment. Our MC ap-
proach is formulated using a sum of Frobenius norm
and ℓ0-norm. In doing so, the dense Gaussian noise is
handled by the Frobenius norm while the sparse outliers
are resisted by the ℓ0-norm.

2) Proximal BCD with an proximal parameter is adopted
to decompose the resultant formulation of our approach
into Gaussian-resistance and outlier detection problems.
Moreover, complex Laplacian kernel with joint PDF of
the real and imaginary parts and normalized median
absolute deviation are applied to detect outliers.

3) We have analyzed the convergence behavior of the
devised method. That is, the objective function value is
convergent, while the variable sequence converges to a
local minimizer. Moreover, the algorithm complexity is
included to demonstrate its computational attractiveness.
The rationale behind the choice of the sampling scheme
is also provided.

4) We perform simulations to verify the superior perfor-
mance of the proposed approach. Its fast convergence
speed is first demonstrated. Besides, in Gaussian mixture
model (GMM) noise, the proposed method achieves
better performance than the method with full data and
Frobenius norm based approaches [16] in terms of
pesudospectrum, MSE and target detection probability.
Moreover, in Gaussian noise, the performance of the
proposed approach is comparable to that of counterpart
approaches designed for Gaussian noise.

The rest of the paper is organized as follows. Section II
describes the background. The proposed ℓ0-norm minimization
based MC approach for MIMO radar target localization is
presented in Section III. Subsequently, we analyze its con-
vergence and complexity in Section IV, and simulation results
are provided in Section V. Finally, Section VI concludes the
paper.

II. BACKGROUND

In this section, notations and the basic colocated MIMO
radar model are presented.

A. Notations

Let (·)T and (·)H denote the transpose and Hermitian
transpose, respectively. Besides, R and C signify the real
and complex spaces, respectively. For a complex number,
j =

√
−1 is the imaginary unit and | · | denotes the magnitude.

Moreover, ℜ(·) and ℑ(·) represent the real and imaginary
parts of a complex number, respectively. In addition, ⊗ is the
Kronecker product, ◦ denotes the element-by-element multi-
plication, diag(·) transforms a vector to a diagonal matrix,
and vec(·) reshapes a matrix to a column vector. Furthermore,

Prob(·) defines the probability of an event, E{·} calculates
the expectation, and max(·) takes the maximum value.

B. Colocated MIMO Radar

Fig. 1. Block diagram of the ℓ0-norm based colocated MIMO radar system

Figure 1 shows the block diagram of the proposed colocated
MIMO radar system based on ℓ0-norm. In this subsection, the
background of the colocated MIMO radar is introduced.

1) Transceiver: Consider a colocated MIMO radar system
with Mt transmit antennas and Mr receive antennas in uniform
linear array (ULA) setting for detecting K targets in the
far field at distinct angles {θk}Kk=1 [16]. The inter-element
spacings between transmit and receive antennas are dt and dr,
respectively. To avoid phase ambiguity, it requires dt ≤ λ/2
and dr ≤ λ/2, where λ = c/fc is wavelength, fc is the carrier
frequency and c = 3× 108 m/s is the speed of light.

At the transmitter, Hadamard pulses are emitted by Mt

antennas with a duration of Tp. Hardmard pulses have good
correlation properties, which provide high resolution to radar
and allow signal transmission from multiple antennas without
interference. Moreover, Hadamard pulses have simple struc-
tures, allowing easy implementation by hardware. The contin-
uous Hadamard pulses can be sampled as discrete Hadamard
code. In this system, the Hadamard code has the length of
N = 128, and one Hadamard code used for one transmit
antenna can be represented as a row in complex Hadamard
matrix HHHc

N ∈ CN×N , given by:

HHHc
N =

1 + j√
2N

HHHN , HHHN =HHH2 ⊗HHHN/2 (1)
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where HHH2 = [1, 1; 1, −1]. Since only Mt antennas transmit
the pulses, the first Mt rows of HHHc

N describe all transmit
pulses, denoted as SSS ∈ CMt×N . After transmitting a pulse, the
transmit antennas are turned off for detection, and the same
pulse is transmitted repeatedly. Here, the interval between
successive pulses is TPRI, and the number of repeat times
is Q. Since the transmit antennas are arranged in ULA, its
transmit steering vector for the kth target at θk is [16]:

aaa(θk) = [1, ej
2π
λ dt sin(θk), · · · , ej 2π

λ (Mt−1)dt sin(θk)]T (2)

where k = 1, · · · ,K. Subsequently, all transmit steer-
ing vectors construct the transmit steering matrix as AAA =
[aaa(θ1), · · · , aaa(θK)].

The channel fading is included in the system model of
bistatic uniform linear array MIMO radar [32], with ΓΓΓq and
DDDq representing the target reflection coefficient and Doppler
spread, respectively [33]. The qth pulse transmitted to the
kth target is affected by the Doppler spread dq,k and the
target reflection coefficient γq,k [34]. We assume that the
transmitted waveform is narrowband, which means that the
waveform bandwidth 1/Tp is much smaller than the carrier
frequency fc. The narrowband pulse assumption also induces
that the transmitted waveform suffers from flat fading, and the
delay spread at the receiver is much smaller than Tp. We also
presume that the Doppler spread of the signal reflected by the
kth target is much smaller than the pulse bandwidth, given by
2vk/λ ≪ 1/Tp, where vk is the velocity of the kth target [16].
The Doppler spread dq,k = ej(2π/λ)2vk(q−1)TPRI constructs
a matrix DDDq = diag(dddq) where dddq = [dq,1, · · · , dq,K ]T .
Moreover, the target reflection coefficient follows the Swerling
II model [35], and forms a matrix ΓΓΓq = diag(γγγq) where
γγγq = [γq,1, · · · , γq,K ]T . In addition to the above multiplicative
fading, the signal suffers from Gaussian noise or impulsive
noise in the wireless channel.

At the receiver, the receive steering vector for the kth target
at θk is:

bbb(θk) = [1, ej
2π
λ dr sin(θk), · · · , ej 2π

λ (Mr−1)dr sin(θk)]T . (3)

Subsequently, all receive steering vectors construct the receive
steering matrix as BBB = [bbb(θ1), · · · , bbb(θK)].

2) Matched Filter: Before further processing, the discrete
data points are sampled from the received waveform. If the
sampling interval is the Nyquist sampling period Ts, N data
points are sampled from one pulse, which is represented as a
row in the receive matrix RRRq ∈ CMr×N of the form:

RRRq = ZZZq +WWW q = BBBΓΓΓqDDDqAAA
TSSS +WWW q (4)

where ZZZq = BBBΓΓΓqDDDqAAA
TSSS is a low-rank matrix, and WWW q is the

noise matrix. Here, the low-rank property of ZZZq is due to the
fact that ΓΓΓqDDDq is a K×K diagonal matrix and the assumption
that Mr and N are much larger than K.

In [16], two sampling schemes are proposed to sample
the signal. The first performs matched filtering before mixing
all received signals together, and the second applies reverse
processing. We choose the second scheme for better outlier-
resistance performance, and the reason of this choice can be
found in Appendix A. For one pulse, a receive antenna can

sample at most N samples in the Nyquist sampling period Ts.
Specifically, the antenna samples the pulse at times nTs, where
n = 0, 1, · · · , N − 1. To reduce the load of sampling, only a
small number of elements in RRRq are sampled. The receive
antenna samples the pulse only at specific times n

′
Ts, where

n
′ ∈ J l, and J l is a random number set that contains Nl < N

distinct integers in [0, N − 1]. The integers in J l denote the
sampling instants of the lth receive antenna.

After sampling, the samples and the index set J l are passed
to the combiner shown in Fig. 1, which constructs an N -
length vector by inserting zeros into the samples according
to J l. All N -length vectors from Mr receive antennas are
collected to construct RRRq,Ω = RRRq ◦ΩΩΩq , where ΩΩΩq ∈ RMr×N

is a matrix consisting of 0 and 1 randomly, and the indices
of 1 in the lth row are elements in J l. To design ΩΩΩq , a pre-
defined proportion of 1s, which is named the observation rate
Or, is used to determine its number in ΩΩΩq . The lower bound of
Or has been investigated in [16]. Moreover, ΩΩΩq cannot have a
row or column whose entries are all 0s. After under-sampling,
RRRq,Ω with all q = 1, · · · , Q are gathered and reshaped as one
matrix for further processing, denoted as:

RRRΩ = [vec(RRR1,Ω), · · · , vec(RRRQ,Ω)]

= [vec(RRR1), · · · , vec(RRRQ)] ◦ [vec(ΩΩΩ1), · · · , vec(ΩΩΩQ)]

= RRR ◦ΩΩΩ = (ZZZ +WWW ) ◦ΩΩΩ
(5)

where

RRR = [vec(RRR1), · · · , vec(RRRQ)]

ΩΩΩ = [vec(ΩΩΩ1), · · · , vec(ΩΩΩQ)]

ZZZ = [vec(ZZZ1), · · · , vec(ZZZQ)]

WWW = [vec(WWW 1), · · · , vec(WWWQ)]

RRR = ZZZ +WWW (6)

where WWW is the reshaped noise matrix. Subsequently, the
robust ℓ0-norm minimization based MC is applied to RRRΩ

to recover the matrix and resist outliers. For better recovery
performance of MC, ZZZ should be of low-rank, which is proved
in Appendix B. Details of the robust ℓ0-norm minimization
based MC are presented in Section III.

3) Target Parameter Estimation: The multiple signal clas-
sification (MUSIC) [36] based algorithm is applied to estimate
the DOAs of K targets thanks to its compatibility with MC
and acceptable complexity. Denoting the MC recovered matrix
as ẐZZ ∈ CMrN×Q, the output of the matched filter is:

ẐZZMF = (S̄SS ⊗ IIIMr
)ẐZZ (7)

where S̄SS is the complex conjugate of SSS, and IIIMr
is the Mr ×

Mr identity matrix. According to [16], the covariance matrix
of ẐZZMF ∈ CMtMr×Q should be calculated first, which is:

ĈCC =
1

Q
ẐZZMF ẐZZ

H

MF . (8)

Afterwards the pseudospectrum is given by [16]:

P (θ) =
1

(aaa(θ)⊗ bbb(θ))
H
EEEnEEEH

n (aaa(θ)⊗ bbb(θ))
, |θ| < 90◦

(9)
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where EEEn contains all eigenvectors of the noise subspace
of ĈCC. The MUSIC-based algorithm finds the peaks in the
pseudospectrum, then the corresponding values of θ are the
estimated DOAs of targets.

III. ℓ0-NORM MINIMIZATION ALGORITHM

In this section, we introduce the ℓ0-norm minimization
based MC algorithm.

Existing MC based algorithms for colocated MIMO radar do
not consider the impulsive noise environment and they adopt
the Frobenius norm to formulate the recovery problem, leading
to:

min
UUU,VVV

∥(UUUVVV )Ω −RRRΩ∥2F (10)

where ∥ · ∥F is the Frobenius norm. This formulation can be
solved by QR factorization [37]–[39]. Although the Frobenius
norm is effective for reducing Gaussian noise, it cannot obtain
good performance in impulsive noise channels.

In the impulsive noise environment, outliers are sparsely
distributed. To improve the performance in impulsive noise
environment, we attempt to separate the sparse outliers from
the noise, and exploit ℓ0-norm penalty to suppress the outliers.
Recalling (5), when the noise is impulsive, there exist outliers
in noise matrix WWW , thus WWW can be divided as Gaussian noise
matrix GGG and outlier matrix OOO. Therefore, (5) is rewritten as:

RRRΩ = (ZZZ+WWW )◦ΩΩΩ = (ZZZ+GGG+OOO)◦ΩΩΩ = ZZZΩ+GGGΩ+OOOΩ. (11)

We exploit the element-wise matrix ℓ0-norm to detect the
sparse outliers, and OOO is defined to store the detected outliers.
The ℓ0-norm is defined as the number of non-zero elements in
a matrix, and it measures the sparsity of a matrix. That is, if ℓ0-
norm is applied to the observed matrix, it is able to separate
sparse outliers from given data. We integrate the Frobenius
norm and ℓ0-norm together to resist the Gaussian noise and
outliers at the same time. According to the definition of ℓ0-
norm and the expression of receive matrix (11), the proposed
approach is:

min
UUU,VVV ,OOO

∥RRRΩ − (UUUVVV )Ω −OOOΩ∥2F + µ∥OOOΩ∥0 (12)

where µ > 0 is a parameter to control the sparsity of OOOΩ = OOO◦
ΩΩΩ. In (12), the Frobenius norm is used for reducing Gaussian
noise and the ℓ0-norm is used to identify and suppress outliers.
Subsequently, in order to solve (12), proximal BCD [40] is
adopted, resulting in the following three subproblems:

UUU l+1 = argmin
UUU

∥RRRΩ − (UUUVVV l)Ω −OOOl
Ω∥2F +

ϕ

2
∥UUU −UUU l∥2F

(13)

VVV l+1 = argmin
VVV

∥RRRΩ − (UUU l+1VVV )Ω −OOOl
Ω∥2F +

ϕ

2
∥VVV − VVV l∥2F

(14)

OOOl+1 = argmin
OOO

∥RRRΩ − (UUU l+1VVV l+1)Ω −OOOΩ∥2F

+ µ(l+1)∥OOOΩ∥0 +
ϕ

2
∥OOOΩ −OOOl

Ω∥2F (15)

where ϕ > 0 is the pre-defined proximal parameter, l denotes
the iteration number, and OOOl

Ω = OOOl ◦ΩΩΩ. Now µ is also con-
sidered as an unknown parameter to be estimated adaptively,

which is replaced by µ(l+1). We first present the solutions for
(13)–(15) as follows. It is observed that (13) can be decoupled
in a row-by-row manner, then independent optimization of
each row can be applied. Denote YYY l

Ω = RRRΩ − OOOl
Ω and let

(yyylΩi
)H be the vector storing the entries in the ith row of YYY l

Ω

with indices in Ωi, where Ωi is the index set of element “1”
in the ith row of ΩΩΩ. Similarly, we define uuuH

i as the ith row of
UUU , and VVV l

Ωi
as the matrix consisting of columns in VVV l with

indices in Ωi. Then (13) is equivalent to:

uuul+1
i = argmin

uuui

∥yyylΩi
− (VVV l

Ωi
)Huuui∥22 +

ϕ

2
∥uuui − uuul

i∥22. (16)

Analogously, considering (14) column-by-column, vvvl+1
j , the

jth column of VVV l+1, is separately estimated from:

vvvl+1
j = argmin

vvvj

∥yyylΩj
−UUU l+1

Ωj
vvvj∥22 +

ϕ

2
∥vvvj − vvvlj∥22 (17)

where Ωj is the index set of element “1” in the jth column
of ΩΩΩ, while UUU l+1

Ωj
and yyylΩj

contain rows in UUU l+1 and jth
column of YYY l

Ω with indices in Ωj , respectively. Since (16) and
(17) are linear least squares problems, the global solutions are
straightforwardly calculated as:(
uuul+1
i

)
∗ = (2VVV l

Ωi
(VVV l

Ωi
)H + ϕIII)−1(2VVV l

Ωi
yyylΩi

+ ϕuuul
i) (18)(

vvvl+1
j

)
∗ = (2(UUU l+1

Ωj
)HUUU l+1

Ωj
+ ϕIII)−1(2(UUU l+1

Ωj
)HyyylΩj

+ ϕvvvlj)

(19)

For solving (15), we first define the difference of incomplete
noise-contaminated matrix and recovered matrix at the (l+1)th
iteration as:

EEEl+1
Ω = RRRΩ − (UUU l+1VVV l+1)Ω. (20)

Afterwards (15) becomes:

OOOl+1=argmin
OOO

∥EEEl+1
Ω −OOOΩ∥2F +µ(l+1)∥OOOΩ∥0+

ϕ

2
∥OOOΩ−OOOl

Ω∥2F .
(21)

Vectorizing (21) and removing the unobserved entries yield:

oool+1 = argmin
ooo

∥eeel+1−ooo∥22+µ(l+1)∥ooo∥0+
ϕ

2
∥ooo−oool∥22 (22)

where eeel+1 and ooo are vectors containing elements of EEEl+1
Ω and

OOOΩ with indices in Ω in the column-first manner, respectively.
Prior to solving (22), the value of µ(l+1), which determines the
sparsity of OOOl+1

Ω and the number of outliers at each iteration, is
required. Therefore, in order to obtain µ(l+1), outlier detection
in eeel+1 is needed and we use the complex Laplacian kernel,
defined as [41]:

kσR,σI
(el+1

i ) =
1

4σRσI
exp

(
−
∣∣ℜ(el+1

i )
∣∣

σR
−
∣∣ℑ(el+1

i )
∣∣

σI

)
(23)

where el+1
i is the ith element of eeel+1, σR and σI are band-

widths of ℜ(eeel+1) and ℑ(eeel+1), respectively. The complex
Laplacian kernel is defined as the joint PDF of Laplace dis-
tributions with real and imaginary parts of el+1

i . The complex
Laplacian kernel has the ability to detect outliers since it
returns a small value when el+1

i has a large magnitude. In
the kernel density estimation, the bandwidths are calculated
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using the normalized median absolute deviation as [42]:

σR = 1.4826×median
(∣∣ℜ (eeel+1

)
−median

(
ℜ
(
eeel+1

))∣∣)
(24)

σI = 1.4826×median
(∣∣ℑ (eeel+1

)
−median

(
ℑ
(
eeel+1

))∣∣)
(25)

where median(·) denotes the sample median. When
kσR,σI

(el+1
i ) ≤ ϵ where ϵ is a user-defined threshold, el+1

i

is assigned as an outlier. Typically, ϵ is set as 10−3. Defining
Il+1 as the set of indices i corresponding to outliers {el+1

i },
µ(l+1) is calculated as:

µ(l+1) = min

{∣∣el+1
1

∣∣2 , · · · , ∣∣el+1
i

∣∣2 , · · · , ∣∣∣el+1
|Il+1|

∣∣∣2 , µ(l)

}
(26)

where |Il+1| is the cardinality of Il+1.
After obtaining µ(l+1), (22) can be computed in an element-

wise manner:

ol+1
i = argmin

o

∣∣el+1
i − o

∣∣2 + µ(l+1)I(o) +
ϕ

2

∣∣o− oli
∣∣2 (27)

where I(o) = 0 when o = 0, I(o) = 1 when o ̸= 0, ol+1
i

and oli are the ith elements of oool+1 and oool, respectively. When
o = 0, the value of the function in (27) is

∣∣el+1
i

∣∣2+ϕ
∣∣oli∣∣2 /2,

and when o ̸= 0, the infimum of (27) is:

inf
o

∣∣el+1
i − o

∣∣2+µ(l+1)+
ϕ

2

∣∣o− oli
∣∣2 = µ(l+1)+

ϕ
∣∣el+1

i − oli
∣∣2

ϕ+ 2
.

(28)
The infimum exists when o = (el+1

i + ϕoli/2)/(1 + ϕ/2).
Therefore, o ̸= 0 when the infimum is less than

∣∣el+1
i

∣∣2 +

ϕ
∣∣oli∣∣2 /2, otherwise o = 0. Finally, we have:

ol+1
i =



el+1
i +

ϕoli
2

1 + ϕ
2

,

if µ(l+1) ≤
∣∣el+1

i

∣∣2 + ϕ
∣∣oli∣∣2
2

−
ϕ
∣∣el+1

i − oli
∣∣2

ϕ+ 2
,

0, otherwise.
(29)

After all element-wise operations, the obtained oool+1 is recon-
structed back to OOOl+1

Ω according to ΩΩΩ. The overall procedure
is summarized in Algorithm 1.

After ℓ0-norm minimization, the MUSIC based target pa-
rameters estimation algorithm is applied to the resultant matrix
R̂RR for DOA estimation. Details of MUSIC can be found in
Section II-B3.

IV. THEORETICAL ANALYSIS

A. Convergence

1) Non-increasing Objective Function Value: We first prove
that the objective function value is non-increasing. Firstly, we
add subscripts µ(l) and µ(l+1) in the objective function of
(12) to denote its values at the lth and (l + 1)th iterations,
respectively. Then the difference of the objective function

Algorithm 1 Low-rank matrix recovery with ℓ0-norm mini-
mization
Input: RRRΩ, ΩΩΩ, ϵ = 10−3

Initialize: Randomly initialize UUU0 and VVV 0, OOO0 = 000, µ(0) =
max(|Ri,j |2).
for l = 0, 1, . . . do

for n = 0, 1, . . . , N − 1 do
Update uuul+1

i based on (18).
end for
for k = 0, 1, . . . , β − 1 do

Update vvvl+1
j based on (19).

end for
Compute EEEl+1

Ω = RRRΩ − (UUU l+1VVV l+1)Ω.
Transform EEEl+1

Ω to eeel+1.
Compute σR and σI based on (24) and (25).
Compute kσR,σI

(el+1
i ) based on (23).

Construct Il+1 which contains all indices i satisfying
kσR,σI

(el+1
i ) ≤ ϵ.

Compute µ(l+1) based on (26).
Compute oool+1 based on (29).
Construct OOOl+1

Ω with oool+1 and ΩΩΩ.
Stop when termination condition is met.

end for
Output: R̂RR = UUU l+1VVV l+1

value in two adjacent iterations is written as:

fµ(l+1)(UUU l+1,VVV l+1,OOOl+1)− fµ(l)(UUU l,VVV l,OOOl)

= fµ(l)(UUU l+1,VVV l,OOOl)− fµ(l)(UUU l,VVV l,OOOl)︸ ︷︷ ︸
f1

+ fµ(l)(UUU l+1,VVV l+1,OOOl)− fµ(l)(UUU l+1,VVV l,OOOl)︸ ︷︷ ︸
f2

+ fµ(l+1)(UUU l+1,VVV l+1,OOOl)− fµ(l)(UUU l+1,VVV l+1,OOOl)︸ ︷︷ ︸
f3

+ fµ(l+1)(UUU l+1,VVV l+1,OOOl+1)− fµ(l+1)(UUU l+1,VVV l+1,OOOl)︸ ︷︷ ︸
f4

(30)
where f1, f2, f3 and f4 refer to the objective function differ-
ences after computing (13), (14), (26) and (15), respectively.
Since UUU l+1, VVV l+1, and OOOl+1 are the optimal solutions of (13),
(14), and (15), respectively, and (26) indicates µ(l+1) ≤ µ(l),
all f1, f2, f3 and f4 are not greater than 0, implying that
f(UUU,VVV ,OOO) is non-increasing.

2) Bounded Sequence: Since according to (30), the
objective function value is non-increasing, we have
fµ(l)(UUU l,VVV l,OOOl) ≤ fµ(0)(UUU0,VVV 0,OOO0), which means
that the objective function value after each iteration is upper
bounded by fµ(0)(UUU0,VVV 0,OOO0). Moreover, according to the
property of norm, the objective function value is also lower
bounded. Subsequently, if ∥UUU0∥F , ∥VVV 0∥F , ∥OOO0∥F , µ(0) < ∞,
we have fµ(0)(UUU0,VVV 0,OOO0) < ∞ and fµ(l)(UUU l,VVV l,OOOl) < ∞.
Therefore, when l → ∞, ∥UUU l∥F , ∥VVV l∥F , ∥OOOl∥F → ∞ is
impossible since it contradicts fµ(l)(UUU l,VVV l,OOOl) < ∞, which
means that values of UUU l,VVV l,OOOl are bounded. Furthermore,
according to (26), µ(l) is non-negative, and non-increasing
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during the update. Hence we can also conclude that µ(l) is
bounded.

3) Convergence to local minimizer: To prove the local
convergence, we show that the sequence {UUU l+1,VVV l+1,OOOl+1}
generated by (13), (14), and (15) satisfies the following [43]:

∥RRRΩ − (UUU l+1VVV l)Ω −OOOl
Ω∥2F +

ϕ

2
∥UUU l+1 −UUU l∥2F

≤ ∥RRRΩ − (UUU lVVV l)Ω −OOOl
Ω∥2F (31)

∥RRRΩ − (UUU l+1VVV l+1)Ω −OOOl
Ω∥2F +

ϕ

2
∥VVV l+1 − VVV l∥2F

≤ ∥RRRΩ − (UUU l+1VVV l)Ω −OOOl
Ω∥2F (32)

∥RRRΩ − (UUU l+1VVV l+1)Ω −OOOl+1
Ω ∥2F

+ µ(l+1)∥OOOl+1
Ω ∥0 +

ϕ

2
∥OOOl+1

Ω −OOOl
Ω∥2F

≤ ∥RRRΩ − (UUU l+1VVV l+1)Ω −OOOl
Ω∥2F + µ(l+1)∥OOOl

Ω∥0
≤ ∥RRRΩ − (UUU l+1VVV l+1)Ω −OOOl

Ω∥2F + µ(l)∥OOOl
Ω∥0 (33)

where the second inequality in (33) is deduced by the non-
increasing property of µ given in (26). Subsequently, summing
(31), (32), and (33) yields:

fµ(l+1)(UUU l+1,VVV l+1,OOOl+1)

+
ϕ

2
∥UUU l+1 −UUU l∥2F +

ϕ

2
∥VVV l+1 − VVV l∥2F +

ϕ

2
∥OOOl+1

Ω −OOOl
Ω∥2F

= ∥RRRΩ − (UUU l+1VVV l+1)Ω −OOOl+1
Ω ∥2F + µ(l+1)∥OOOl+1

Ω ∥0

+
ϕ

2
∥UUU l+1 −UUU l∥2F +

ϕ

2
∥VVV l+1 − VVV l∥2F +

ϕ

2
∥OOOl+1

Ω −OOOl
Ω∥2F

≤ ∥RRRΩ − (UUU l+1VVV l+1)Ω −OOOl
Ω∥2F + µ(l)∥OOOl

Ω∥0
= fµ(l)(UUU l,VVV l,OOOl). (34)

Then (34) is equivalent to:

ϕ

2
∥UUU l+1 −UUU l∥2F +

ϕ

2
∥VVV l+1 − VVV l∥2F +

ϕ

2
∥OOOl+1

Ω −OOOl
Ω∥2F

≤ fµ(l)(UUU l,VVV l,OOOl)− fµ(l+1)(UUU l+1,VVV l+1,OOOl+1). (35)

Summing over l = 0, 1, · · · , L− 1 yields [44]:
L−1∑
l=0

ϕ

2
∥UUU l+1 −UUU l∥2F +

ϕ

2
∥VVV l+1 − VVV l∥2F +

ϕ

2
∥OOOl+1

Ω −OOOl
Ω∥2F

≤ fµ(0)(UUU0,VVV 0,OOO0)− fµ(L)(UUUL,VVV L,OOOL) < ∞ (36)

where fµ(0)(UUU0,VVV 0,OOO0) is a finite constant, and fµ(L)(UUUL,
VVV L,OOOL) is non-negative and bounded. Taking the limit as
L → ∞ in (36), we have [44]:

lim
l→∞

ϕ

2
∥UUU l+1 −UUU l∥2F +

ϕ

2
∥VVV l+1 − VVV l∥2F +

ϕ

2
∥OOOl+1

Ω −OOOl
Ω∥2F

= 0 (37)

Subsequently, combining (37) and (20) leads to:

lim
l→∞

∥EEEl+1
Ω −EEEl

Ω∥2F = 0. (38)

Since µ(l+1) is derived from elements in EEEl+1
Ω , we can obtain

from (38) that:

lim
l→∞

∣∣∣µ(l+1) − µ(l)
∣∣∣ = 0. (39)

Combining (37), (39) and the bounded condition proved in
Section IV-A2, we can conclude that

(
UUU l,VVV l,OOOl

)
has a

subsequence to converge. Moreover, according to [45], our
objective function has the Kurdyka-Łojasiewicz (KL) property.
Based on the subsequence convergence and the KL property,(
UUU l,VVV l,OOOl

)
converges to a local minimizer (UUU∗,VVV ∗,OOO∗), see

Theorem 2 of [40].

B. Computational Complexity

To solve (13) and (14), from (18) and (19) we know that the
update of uuul+1

i has the complexity of O(|Ωi|K2), and the up-
date of vvvl+1

j has the complexity of O(|Ωj |K2). Therefore, both
updates of UUU l+1 and VVV l+1 have the complexity of O(|Ω|K2)
since

∑N
i=1 |Ωi| = |Ω| and

∑β
j=1 |Ωj | = |Ω|. For (15), since

the computation of complex Laplacian kernel is linear with
the number of sampled elements, the complexity is O(|Ω|).
Therefore, the overall complexity of the ℓ0-norm minimization
algorithm is the sum of complexity for optimizing (13), (14)
and (15), which is O(|Ω|K2). The complexity of the proposed
algorithm is linear to |Ω|. This implies that under-sampling
can reduce the computational complexity of the MIMO radar
system, making it suitable for systems with a large sampling
load. Similarly, the complexity of the Frobenius norm based
MC in (10) is also O(|Ω|K2), since (13) and (14) are still
involved. The complexity comparison with other systems is
presented in Table I, which shows that our system has low
computational complexity.

TABLE I
COMPLEXITY COMPARISON

Approach Complexity

Proposed O(|Ω|K2)

Frobenius norm based MC O(|Ω|K2)

Singular value thresholding based MC [16] O(MrNQ2)

ℓp-norm based MC [46] O(|Ω|NIRLSK
2)

The Frobenius norm based MC, [16], and the ℓ0-norm
minimization algorithm are realized using a PC with Intel
i7-9700 3.00GHz CPU. The execution time of the Frobenius
norm based MC, [16], and the ℓ0-norm minimization algorithm
are 2.59s, 6.26s, and 2.76s, respectively. The results show that
the ℓ0-norm minimization algorithm is much faster than [16],
and has similar execution time as that of the Frobenius norm
based MC.

V. SIMULATION RESULTS

Parameters of our simulation study are listed in Table II,
where Or denotes the ratio of sampled data points to the
maximum number of data points. For the impulsive noise,
GMM is a popular model whose PDF is:

pw(w) =
c1
πσ2

1

e
− |w|2

σ2
1 +

c2
πσ2

2

e
− |w|2

σ2
2 (40)

where both c1 and c2 are in (0, 1), c1 + c2 = 1, σ2
1 and σ2

2

are the variances of Gaussian components. Without the loss
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TABLE II
SYSTEM PARAMETERS

Parameter Value
Number of transmit antennas Mt = 10
Number of receive antennas Mr = 10

Number of targets K = 2
Wavelength λ = 0.3m

Spacing of transmit antennas dt = λ/2
Spacing of receive antennas dt = λ/2

Number of pulses Q = 128
Pulse length N = 128

Pulse repetition interval TPRI = 5 · 10−6s
Observation rate Or = 0.5

DOAs [−20, 10]◦

Velocities [150, 450]m/s
Powers of target reflection coefficient [0.3, 0.4]

Number of Gaussian components 2
Probabilities of Gaussian components c1 = 0.9, c2 = 0.1

Powers of Gaussian components 10σ2
1 = σ2

2

Proximal parameter ϕ = 10−5

Maximum iteration number 50
Number of Monte-Carlo trials 250

of generality, assuming that c1 ≫ c2 and σ1 ≪ σ2, the first
Gaussian component denotes the Gaussian background noise
with small power σ2

1 and large probability c1, while the second
denotes outliers with large power σ2

2 and small probability c2.

A. Convergence
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200
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1000
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Fig. 2. Illustration of Convergence.

Figure 2 provides the empirical evidence that Algorithm 1
converges. Here, the signal-to-noise ratio (SNR) is set as 10dB.
We see that the objective function value is non-increasing as
the iteration number increases, and becomes stable within three
iterations.

Figures 3 and 4 show the convergence behaviors of the
elements in UUU and VVV during iterations. The upper sub-figure
depicts the real part and the lower one shows the imaginary
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Fig. 3. Convergence of elements in UUU .
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Fig. 4. Convergence of elements in VVV .

part. Each line represents the value of one element versus
the iteration number. We observe that each element in UUU
and VVV converges after a few iterations, which confirms the
convergence analysis in Section IV-A.

B. Pseudospectrum

Figures 5 and 6 illustrate the pseudospectrum output by the
MUSIC algorithm in GMM and Gaussian noise, respectively.
The SNR in this simulation is set as 10dB. The pseudospec-
trum is defined as the normalized power spectrum calculated
as (9) in log scale, given by:

Ppse(θ) = 10 log

(
P (θ)

max (P (θ))

)
. (41)

In both figures, all algorithms can successfully locate the
targets at −20◦ and 10◦. In GMM noise, thanks to the
outlier detection and suppressing performance, the ℓ0-norm
minimization algorithm corresponds to the best spectral es-
timation because it has the largest relative peak among all
approaches. In Gaussian noise, the proposed approach has
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Fig. 5. Pseudospectrum in GMM noise.
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Fig. 6. Pseudospectrum in Gaussian noise.

similar performance as the Frobenius norm based MC, and
has better performance than [16]. Although full data sampling
obtains the best performance in this case, its system loading
is the largest.

Pseudospectrum computation in GMM noise under more
harsh scenarios is investigated. Fig. 7 shows the performance
of full-sampled system and MC based under-sampled system
with an observation rate of 0.2, indicating that only 20%
of the samples are collected. The penalty parameter µ is
set as 8 × 10−3. It is observed that the proposed method
achieves the best spectral estimation among all MC algorithms.
Furthermore, its performance with Or = 0.2 is comparable
to that of the full-sampling scheme. Fig. 8 shows the pseu-
dospectrum for 4 targets located at [−20,−10, 10, 40]◦. We
see that our algorithm performs the best when the number of
targets increases to 4, and is even superior to the full-sampling
method.
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Fig. 7. Pseudospectrum in GMM noise, Or = 0.2.
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Fig. 8. Pseudospectrum in GMM noise, K = 4.
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Fig. 9. MSE of estimated angles with different ϵ in GMM noise.
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C. MSE of Estimated Angles
In Algorithm 1, the threshold of complex Laplacian kernel

function is set as ϵ = 10−3. One may ask whether the
performance is sensitive to the choice of ϵ, thus Fig. 9 is
plotted to show the results using different values of ϵ in GMM
noise. It is seen that when ϵ is smaller than 10−3, the MSE of
estimated angles becomes slightly larger. This is because when
ϵ becomes smaller, less outliers are detected and suppressed,
deteriorating the MSE performance. Although smaller ϵ leads
to larger MSE, the MSE value is still lower than the MSE
of full data, even if ϵ is set as an extremely small value, e.g.
10−7.
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Fig. 10. MSE of estimated angles versus SNR in GMM noise.
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Fig. 11. MSE of estimated angles versus SNR in Gaussian noise.

Figures 10 and 11 show the MSE of estimated angles MSEθ

in GMM and Gaussian noise, respectively. MSEθ is defined
as:

MSEθ = E
{(

θ̂k − θk

)2}
(42)

where θ̂k is the estimated angle of the kth target. Similar to
the result in pseudospectrum, the ℓ0-norm minimization algo-

rithm has the smallest MSE in GMM noise. This is because
the ℓ0-norm minimization can detect and eliminate outliers.
Moreover, the MUSIC algorithm used for target parameter
estimation in MIMO radar can suppress the Gaussian noise,
but not the outliers. Therefore, the under-sampled MIMO
radar system with our ℓ0-norm based approach achieves much
higher robustness than the full-sampled MIMO radar system in
impulsive noise. In Gaussian noise, the ℓ0-norm minimization
algorithm and the Frobenius norm based MC have similar
performance, while [16] is better in the low SNR area and
becomes worse when SNR is high. Since no outliers appear
in the Gaussian noise and MUSIC algorithm can effectively
handle the Gaussian noise, the MSE performance of the
proposed system is similar to that of other systems.

D. Target Detection Probability
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Fig. 12. Target detection probability versus SNR in GMM noise.
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Fig. 13. Target detection probability versus SNR in Gaussian noise.

Figures 12 and 13 plot the target detection probability in
GMM and Gaussian noise, respectively. The target detection
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probability of 2 targets is defined as:

PD = Prob

( ∣∣∣θ̂1 − θ1

∣∣∣ < δ |θ1 − θ2|

and
∣∣∣θ̂2 − θ2

∣∣∣ < δ |θ1 − θ2|
) (43)

where δ denotes the tolerance of estimation errors, and δ =
10−3 is employed. In terms of target detection probability, the
ℓ0-norm minimization algorithm also has better performance in
GMM noise. Moreover, it is observed from the Gaussian noise
case that the MSE advantage of [16] in low SNR does not
lead to high target detection probability, but the worse MSE
performance of [16] in high SNR makes its target detection
probability performance worse than the ℓ0-norm minimization
algorithm and the Frobenius norm based MC.

VI. CONCLUSION

A novel ℓ0-norm minimization based MC approach for
target localization in colocated MIMO radar is proposed in
this paper. Aiming at reducing the sampling load, under-
sampling is applied, leading to an incomplete matrix after
sampling. Owing to the low-rank property of the noise-
free colocated MIMO radar signal matrix, MC approach is
applied to recover the complete matrix. To restrain outliers
and Gaussian noise simultaneously, the proposed approach
is formulated using a linear combination of Frobenius norm
and ℓ0-norm. The Frobenius norm is used for reducing the
Gaussian noise while the ℓ0-norm is used for detecting and
resisting outliers. We adopt proximal BCD to decompose the
problem into three subproblems which are alternately solved.
Moreover, the complex Laplacian kernel with joint PDF of the
real and imaginary parts and the median absolute deviation
are applied to detect outliers. Convergence and complexity of
the proposed approach are theoretically analyzed. Simulation
results show that the ℓ0-norm minimization based approach
obtains superior pseudospectrum, MSE and target detection
probability performances over the other MC-based approaches
in GMM noise.

APPENDIX A
REASON OF CHOOSING THE SECOND SAMPLING SCHEME

We first explain why the first sampling scheme is not
suitable. Since the first scheme performs the matched filtering
prior to mixing the samples, the noise processed by the
matched filter is:

ΞΞΞq =WWW qSSS
H (44)

where the (b, a) element of ΞΞΞq ∈ CMr×Mt is ξb,a =∑N
n=1 wb,nsa,n, wb,n is the (b, n) element of WWW q and sa,n

is the (a, n) element of SSS. Suppose there is GMM impulsive
noise, where the real and the imaginary parts have the same
distribution. According to (40), the real part of the noise has
the following distribution:

pℜ(w)(ℜ(w)) =
c1√
πσ1

e
−ℜ(w)2

σ2
1 +

c2√
πσ2

e
−ℜ(w)2

σ2
2 . (45)

Then the characteristic function of ℜ(w) can be obtained by
performing the Fourier transform on pℜ(w)(ℜ(w)), given by:

fℜ(w)(t) = c1e
− 1

4 (σ1t)
2

+ c2e
− 1

4 (σ2t)
2

. (46)

Since SSS is part of the complex Hadamard matrix, (1) is used
to determine the value of sa,n, which implies that sa,n =
±(1 + j)/

√
2N . Therefore, the real part of ΞΞΞq is:

ℜ(ΞΞΞq) = [ℜ(WWW q) ℑ(WWW q)] [ℜ(SSS) ℑ(SSS)]T (47)

where ℜ(SSS) and −ℑ(SSS) are matrices whose elements are
±1/

√
2N . Similarly, we know that the real and imaginary

parts of ξb,a have the same distribution. According to (46)
and ignoring the subscripts b and a in ξb,a, the characteristic
function of ℜ(ξ) is:

fℜ(ξ)(t) =
(
c1e

− 1
8N (σ1t)

2

+ c2e
− 1

8N (σ2t)
2
)2N

=

2N∑
m=0

C2N
m cm1 c2N−m

2 e−
mσ2

1+(2N−m)σ2
2

8N t2 .
(48)

where C2N
m denotes the number of m-combinations in 2N

elements. Then the PDF of ℜ(ξ) is:

pℜ(ξ)(ℜ(ξ)) =
2N∑
m=0

C2N
m cm1 c2N−m

2√
πνm

e
−ℜ(ξ)2

ν2
m (49)

where
ν2m =

mσ2
1 + (2N −m)σ2

2

2N
. (50)

In (49), the Gaussian component with variance σ2
1/2 has the

probability c2N1 , and the Gaussian component with variance
σ2
2/2 has the probability c2N2 . While in (45), the Gaussian

component with variance σ2
1/2 has the probability c1, and the

Gaussian component with variance σ2
2/2 has the probability

c2. Comparing (49) and (45), the probabilities of Gaussian
components with largest and smallest variances in (49) are
much smaller than those in (45) because 0 < c1, c2 < 1
and 2N ≫ 1. Therefore, we conclude that after the matched
filtering in the first scheme, most of the noise power is
concentrated on Gaussian components with variances between
σ2
1/2 and σ2

2/2, which means that ξ is less impulsive than w.
In other words, the matched filter averages the variance of
different components, and makes the noise less impulsive. For
other impulsive noise models, the noise after being processed
by matched filter is also less impulsive, as the power difference
of impulsive noise and background noise still exists. However,
the robust MC techniques are more effective when the noise is
more impulsive, thus these techniques should be applied in the
original received data rather than the data after being processed
by the matched filter in the first scheme. In the second scheme,
MC is performed on the original received data, thus we choose
it.

APPENDIX B
PROOF OF LOW RANK PROPERTY OF ZZZ

The MIMO radar transceiver uses a ULA configuration for
both transmitter and receiver where the reflection coefficients
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and Doppler spreads of targets are represented by diagonal
matrices, ΓΓΓq and DDDq , respectively. Subsequently, vec(ZZZq) is:

vec(ZZZq) = vec(BBBΓΓΓqDDDqAAA
TSSS) =

(
(SSSTAAA)⊗BBB

)
vec(ΓΓΓqDDDq).

(51)
According to (6) and (51), ZZZ is rewritten as:

ZZZ =
(
(SSSTAAA)⊗BBB

)
[vec(ΓΓΓ1DDD1), · · · , vec(ΓΓΓQDDDQ)]

=
(
(SSSTAAA)⊗BBB

)
ΣΣΣ

(52)

where ΣΣΣ = [vec(ΓΓΓ1DDD1), · · · , vec(ΓΓΓQDDDQ)]. Since ΓΓΓqDDDq is a
K×K diagonal matrix, only the k2th elements in vec(ΓΓΓqDDDq)
are non-zero, where k = 1, · · · ,K. Therefore, only K rows
in ΣΣΣ are non-zero. Since (SSSTAAA) ⊗ BBB ∈ CMrN×K2

and
ΣΣΣ ∈ CK2×Q, ZZZ is of low-rank when Mr, N,Q ≫ K. ZZZq and
ZZZ are low-rank matrices under the assumption that Mr ≫ K,
N ≫ K, and Q ≫ K, as stated in (4) and (52). This
assumption is easily met by setting Mr, N , and Q to be
sufficiently large. The low-rank property can be intuitively
understood as a superimposition of signals from K paths,
represented as K rank-1 sub-matrices.
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