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Abstract—One-bit compressed sensing (1-bit CS) inherits the
merits of traditional CS and further reduces the cost and
burden on the hardware device via employing the 1-bit analog-
to-digital converter. When the measurements do not involve sign
flips caused by additive noise, most contemporary algorithms
can attain excellent signal restoration. However, their recovery
performance might significantly degrade if there is even a small
portion of sign flips. In order to increase the estimation accuracy
in noisy scenarios, we devise a new signal model for 1-bit CS
to attain robustness against sign flips. Then, we give a double-
sparsity optimization formulation of the restoration problem.
Subsequently, we combine proximal alternating minimization and
projected gradient descent to tackle the problem. Different from
existing robust methodologies, our approach, referred to as robust
one-bit CS (ROCS), does not require the number of sign flips.
Furthermore, we analyze the convergence behavior of ROCS and
show that the objective value and variable sequences converge.
Numerical results using synthetic data demonstrate that ROCS
is superior to the competing methods in terms of reconstruction
error in noisy environments. ROCS is also applied to direction-of-
arrival estimation and outperforms state-of-the-art approaches.

Index Terms—Robust algorithm, one-bit compressed sensing,
direction-of-arrival estimation, ℓ0-norm optimization.

I. Introduction

TO improve the efficiency of data acquisition, compressed
sensing (CS) has been proposed, which adopts the spar-

sity property to recover a sparse signal from a few mea-
surements [1], [2]. In accordance to the Nyquist-Shannon
sampling theorem, a signal must be sampled at least twice as
high as its maximum frequency to be perfectly reconstructed.
In contrast, CS allows for a lower sampling rate for the
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sparse signals. Note that if signals are non-sparse, a linear
projection may obtain sparse substitutes. In recent years, the
rapid development of data acquisition necessitates collecting a
vast quantity of measurements, leading to the challenges in CS,
particularly in terms of storage cost and hardware complexity.
To handle these issues, one-bit CS (1-bit CS) [3] is suggested
via employing 1-bit analog-to-digital converter (ADC) that
preserves only the sign information of the measurements. The
process of 1-bit quantization can be implemented using a
simple comparator to zero, which significantly reduces the
cost and burden on hardware devices. Due to this merit, 1-
bit CS has been applied in synthetic aperture radar (SAR)
imaging [4], [5], direction-of-arrival (DOA) estimation [6], [7],
and wireless sensor networks [8], [9], to name a few.

A. Prior Art

Given a sparse signal xxx ∈ RN with unit energy, its
observations after quantization can be expressed as

yyy = sgn(AAAxxx), (1)

where sgn(·) is the sign function, yyy ∈ RM and AAA ∈ RM×N

is the measurement matrix with M < N . The aim of 1-bit
CS is to recover xxx from yyy based on AAA. It has been shown
that one can recover xxx from yyy with high probability if AAA has
the binary ϵ-stable embedding (BϵSE) property [10]. Given a
sensing matrix AAA, and two sparse vectors xxx1 and xxx2, BϵSE is
described as

1

π
arccos⟨xxx1,xxx2⟩ − ϵ ≤ 1

M
∥sgn(AAAxxx1)− sgn(AAAxxx2)∥0

≤ 1

π
arccos⟨xxx1,xxx2⟩+ ϵ, (2)

where ϵ ∈ (0, 1) and ∥ · ∥0 is ℓ0-norm corresponding to
the number of non-zero entries. For the exact reconstruction
guarantee of a sparse signal with a high probability, BϵSE is
required in noisy environments but not in noiseless ones [10].
Nonetheless, verifying the BϵSE property for a given matrix
may be a computationally intractable task. Instead, AAA is
generally modeled as a Gaussian random matrix.

Based on traditional CS, the ideal optimization model for
1-bit CS is formulated as an ℓ0-norm minimization problem,
subject to two constraints of fitting error and signal energy [11]

min
xxx

∥xxx∥0 s.t. yyy = sgn(AAAxxx), ∥xxx∥2 = 1. (3)

The energy requirement aims to resolve the amplitude am-
biguity as 1-bit quantization cannot retain the signal ampli-
tude information. It is worth noting that non-zero random
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quantization threshold has been exploited for signal energy
estimation [12]. Besides, one-bit sampling with a dithered
reference level is applied for amplitude recovery in [13], [14].
Minimizing ℓ0-norm is an NP-hard problem [15] and thus ℓ1-
norm is exploited to approximate the ℓ0-norm for 1-bit CS [3],
resulting in

min
xxx

∥xxx∥1 s.t. YYY xxx ≥ 0, ∥xxx∥2 = 1, (4)

where YYY = diag(yyy)AAA. Herein, diag(yyy) returns a square
diagonal matrix with the elements of vector yyy on the main
diagonal. The ℓ1-norm as a convex envelope of the ℓ0-
norm is a loose relaxation, thereby its solution might not
be optimal [16]. To solve this issue, reweighted ℓ1-norm
as a tighter envelope is adopted as the loss function [17].
Xiao et al. [18] propose a Schur-concave function [19] to
approximate the ℓ0-norm and then apply it to 1-bit CS. Zhong
et al. [20] substitute the ℓ1-norm with the total variation
semi-norm [21] for the application of image restoration. The
aforementioned algorithms achieve excellent performance in
noiseless environment, while their recovery accuracy might
be degraded when the received signal has a small portion of
sign flips caused by additive noise.

The noisy observations after quantization can be written as

yyy = sgn(AAAxxx+ ñnn), (5)

where ñnn ∈ RM is the noise vector. Extensive research has
investigated the impact of thresholding or dithering on the
quantization process and its subsequent effect on quantization
error [22]–[24]. The dithering exhibits notable ability to re-
duce the overall average quantization error and facilitates a
balance between accuracy and resolution. Additionally, time-
varying sampling thresholds have been exploited for recovery
enhancement [25]–[29].

On the other hand, under the assumption that the sparsity of
the target signal is known, Jacques et al. [10] reformulate 1-
bit CS as a fitting error minimization with sparsity and energy
constraints:

min
xxx

∥[yyy ⊙ (AAAxxx)]−∥pp s.t. ∥xxx∥0 = S, ∥xxx∥2 = 1, (6)

where p = 1 or 2, S > 0 is the desired sparsity, and [a]− is de-
fined as [aaa]− := [min(a1, 0),min(a2, 0), . . . ,min(aM , 0)]⊤.
The resultant problem is then addressed using iterative hard
thresholding (IHT). Yan et al. [30] introduce an upper bound
of the number of sign flips, resulting in the adaptive outlier
pursuit (AOP) formulation:

min
xxx,ΛΛΛ

∥[ΛΛΛ⊙ yyy⊙(AAAxxx)]−∥22

s.t.
M∑
i=1

(1− Λi) ≤ L,Λi ∈ {0, 1}

∥xxx∥0 = S, ∥xxx∥2 = 1, (7)

where L is the maximum number of wrong signs, Λi = 1 if
yi is correct, and otherwise Λi = 0. When L is accurately
estimated, AOP is able to attain high recovery accuracy.
However, the performance of AOP will be degraded if L is
inappropriately chosen. In addition, the convergence of AOP
cannot be guaranteed.

Then, Fu et al. [31] enhance the detection approach, lead-
ing to more accurate recovery in strong noisy environment.
Sivakant et al. [32] deal with the reconstruction task with two
individual stages, namely, support restoration and approximate
signal reconstruction. Fan et al. [33] employ ℓp-norm with
0 < p < 1 to formulate the sparsity constraint, which is
then converted into a penalty term. In addition, Huang and
Yan [34] replace the ℓ1-norm with minimax concave penalty
and then obtain a fast algorithm with a nonconvex penalty.
Dai et al. [35] apply maximum a posteriori estimation to
design a robust one-sided ℓ0-norm objective model that does
not require the number of sign flips. Later, Friedlander et
al. [36] propose the normalized binary IHT (NBIHT), whose
approximation error rate matches the information-theoretic
lower bound. Besides, Zhou et al. [11] suggest a double-
sparsity constrained model:

min
xxx,ΨΨΨ

∥YYY xxx+ΨΨΨ− α111∥22 + γ∥xxx∥22

s.t. ∥xxx∥0 ≤ S, ∥[ΨΨΨ]+∥0 ≤ L, (8)

where ΨΨΨ ∈ RM , γ > 0 is the regularization parameter, and
α > 0 is a small value, such that the positive components of
(YYY xxx−α111) can be considered as the number of sign flips. Al-
though (8) is nonconvex, gradient projection method equipped
with subspace pursuit (GPSP) is able to globally converge
to a unique stationary point. Nevertheless, the performance
of GPSP still depends on the choice of L. Furthermore, the
works [37], [38] give a linear feasibility reformulation of
the 1-bit CS problem and subsequently utilize the Kaczmarz
algorithm to solve the reformulation. When the cumulative
distribution function (CDF) of the noise is known, [37]
achieves excellent performance in the presence of erroneous
signs, whereas [38] employs the upper quantile method.
These two methods exhibit significantly lower computational
complexity compared to other approaches. Additionally, deep
unfolding has been exploited to design neural networks for 1-
bit CS [39]–[42]. Specifically, [40] requires the noise CDF to
achieve noise robustness, while [42] learns a surrogate value
of noise covariance to enhance the signal restoration. Other
works for robust 1-bit CS include , primal and dual active set
(PDAS) [43], ℓ1-norm Shannon entropy [44], and mixed 1-bit
CS (M1-bit-CS) [45].

B. Motivations and Contributions

Most existing robust algorithms for 1-bit CS still face
challenges from the sign flips of the measurements. A portion
of them does not need the number of wrong signs, but their
performance might be unsatisfactory under high noise levels.
On the other hand, the algorithms that require the information
of sign flips can achieve excellent restoration if the number
is precisely estimated. Nevertheless, finding the flip number
poses a big challenge in practice.

In this paper, we aim at devising a robust one-bit CS
(ROCS) method to tackle 1-bit CS in the presence of additive
noise. By remodeling the received signal after quantization, the
sparsity property of quantized noise vector can be determined.
We then exploit this characteristic to model the 1-bit CS
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problem, which is formulated as an optimization task con-
sisting of ℓ2-norm and ℓ0-norm terms, subject to the sparsity
constraint on the target signal. To tackle the resultant problem,
we substitute the tanh function for the sign operator and then
adopt proximal alternating minimization (PAM) [46], [47] and
projected gradient descent (PGD) [48] as the solver. Further-
more, theoretical properties of the suggested method, including
computational complexity, as well as the convergence behavior
of the loss function value and variable sequences, are provided.
Our main contributions are summarized as follows:

1) Novel observed signal model: We remodel the quantized
signal vector to investigate the characteristic of the ad-
ditive noise after quantization. As the 1-bit quantizer
destroys the distribution of noise, most existing signal
models cannot reveal the underlying property of noise
after quantization. Our new representation discloses the
sparsity of the noise vector.

2) New objective function: Exploiting the sparsity property
of the target and noise signals, we formulate the recovery
problem using ℓ2-norm and ℓ0-norm. The former is
employed to calculate the fitting error, while the latter
is designed as a penalty term and constraint for sparse
noise and desired signal, respectively. As a result, our
approach does not require the number of sign flips.

3) Efficient ROCS algorithm: Although our method con-
tains a regularization parameter, its performance is not
sensitive to such a parameter. In addition, we analyze
the convergence behavior of the suggested algorithm.
Specifically, we show that the objective value sequence
is convergent, while the variable sequence is guaranteed
to converge to a critical point.

4) Accurate estimation: Experiment results using synthetic
data demonstrate that the devised approach is superior
to popular robust methodologies in noisy environments.
Besides, our method is applied to DOA estimation and
outperforms state-of-the-art (SOTA) algorithms.

C. Organization and Notation

The remainder of this paper is organized as follows. The
proposed model and algorithm are presented in Section II.
Besides, the convergence behavior and computational require-
ments of the algorithm are analyzed. In Section III, numerical
examples are included to evaluate the devised method against
several SOTA approaches. Finally, concluding remarks are
given in Section IV.

Notation: The identity matrix is denoted by III . The sign
function for complex values is represented as csgn(·), while
the entry-wise tanh function is denoted by tanhc(x) =
tanh(cx) = (ecx−e−cx)/(ecx+e−cx) with c being a positive
constant. Besides, AAA⊤ and AAAH are the transpose and Hermitian
transpose of AAA ∈ RM×N and AAA ∈ CM×N , respectively. Given
a scalar a, |a| is its absolute value.

II. Algorithm Development

In this section, we present a new model for 1-bit CS and
then devise an effective algorithm with convergence guarantee.

A. Proposed Model

Attempting to improve 1-bit CS in noisy environments, we
model the observed signal after quantization as

yyy = sgn(AAAxxx+ ñnn) (9a)
= sgn(AAAxxx) +nnn, (9b)

where nnn ∈ RM with ni ∈ {−2, 0, 2}. In (9a), ñnn is unrestricted,
implying that it can represent various noise types, such as
Gaussian and Laplacian noise. Even the distribution of ñnn
varies, the distribution of nnn will finally fall in the shell of the
tri-valued discrete distribution because ni ∈ {−2, 0, 2}, i =
1, . . . , N . Nevertheless, different distributions or intensities of
ñnn will yield various sparsity levels of nnn. The sparse noise is
also considered in the classic CS research [49]. However, the
amplitude of the sparse noise in (9b) is a deterministic con-
stant, while that of the conventional model [49] is randomly
large. Besides, [50] studies CS with the measurement matrix
being corrupted by sparse errors.

We know that the recovery problem in high-bit quantization
requires exploiting different norms to resist various types of
distributed noise, for instance, ℓ2-norm for Gaussian noise
and ℓ1-norm for Laplacian noise. In the context of 1-bit CS,
(9b) reveals that various types of distributed noise can be
transformed into the sparse noise with specific magnitudes.
Consequently, we can design one formulation to resist different
noise models.

For the sake of completeness, we introduce the following
theorem to demonstrate the fundamental feasibility of recov-
ering xxx from yyy.

Theorem 1. [10] Suppose that xxx∗ with ∥xxx∗∥2 = 1 is the
ground truth, and x̄xx is the estimate from a sparse consistent
reconstruction method1 using the measurement yyy corrupted by
noise ñnn ∼ N (0, σ2) with AAA ∼ N (0, 1)M×N , and M satisfies

M ≥ 2

ϵ2

(
S log(N) + 2S log

(
35

ϵ

)
+ log

(
2

β

))
, (10)

where ϵ > 0 is chosen to compromise between M and the
upper bound of estimation error, while 0 ≤ β ≤ 1 balances
M and the probability that the estimation error is less than
the upper bound. Then, we have

1

π
arccos⟨x̄xx,xxx∗⟩ − ϵ ≤ 1

M
∥sgn(AAAxxx∗ + ñnn)− sgn(AAAxxx∗)∥0

≤ σ

2
+ τ, (11)

with a probability higher than 1− e−2Mτ2 − β where τ > 0.

On the other hand, since our method handles 1-bit CS with
noise, the sampling matrix must meet BϵSE [10], indicating
that our method is not robust against the sampling matrix.

Based on our signal model, we formulate the recovery
problem as

min
xxx,nnn

∥yyy − sgn(AAAxxx)−nnn∥22 + γ∥nnn∥0

s.t. ∥xxx∥0 ≤ S, ∥xxx∥2 = 1, (12)

1A sparse consistent method is defined as a general nonlinear reconstruction
decoder that attempts to find a solution as consistent with the measurements
as possible, while guaranteeing the sparsity constraint is met [10].
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where γ > 0 is a regularization parameter to control the spar-
sity of nnn. Compared with most existing robust formulations
that require the number of sign flips, the proposed model does
not need this prior information. Moreover, in Section III, we
will show that the performance of (12) is not sensitive to the
selection of γ.

Furthermore, our formulation is related to adaptive least
absolute shrinkage and selection operator (LASSO) [51],
smoothly clipped absolute deviation (SCAD) [52], minimax-
concave plus (MC+) [53], and IHT [48]. LASSO, SCAD,
and MC+ yield biased estimation, whereas IHT and our
formulation produce unbiased estimation. In contrast to IHT,
which involves one sparse variable, our optimization problem
consists of two sparse variables.

B. Proposed Algorithm

Since the sign function is discontinuous and not lower
semicontinuous, it is challenging to directly tackle the resultant
optimization problem (12). Therefore, we adopt the tanh
function to approximate it, and their comparison is shown in
Fig. 1. It is seen that c controls the degree of approximation,
such that tanhc(·) = sgn(·) as c → +∞. Exploiting the tanh
function, we formulate the restoration task as

min
xxx,nnn

f(xxx,nnn) = min
xxx,nnn

∥yyy − tanhc(AAAxxx)−nnn∥22 + γ∥nnn∥0

s.t. ∥xxx∥0 ≤ S. (13)

Analogous to most existing formulations, the energy constraint
is not contained in (13). After we obtain the solution, this re-
quirement can be satisfied via normalization. As (13) involves
two target variables, we exploit the PAM concept [46], [47]
to address it, leading to the following iterative procedure:

xxxk = arg min
xxx, ∥xxx∥0≤S

f̃(xxx,nnnk−1)

= arg min
xxx, ∥xxx∥0≤S

∥yyy−tanhc(AAAxxx)−nnnk−1∥22+µ∥xxx−xxxk−1∥22,

(14a)

nnnk = argmin
nnn

f̃(xxxk,nnn)

= argmin
nnn

∥yyy − tanhc(AAAxxx
k)−nnn∥22 + γ∥nnn∥0

+ µ∥nnn−nnnk−1∥22, (14b)

where µ > 0 is a pre-defined proximal parameter and the last
terms in (14a) and (14b) are called proximal regularization. It
is worth mentioning that µ is used for convergence guarantee,
and can be set to a small value. When µ = 0, PAM reduces
to the classic alternating minimization [54].

As there is no closed-form solution to (14a), we adopt
PGD [48] as the solver, leading to

xxxk−1
p = PS

(
xxxk−1
p−1 − η∇f̃(xxxk−1

p−1,nnn
k−1)

)
, (15)

where PS(·) is an entry-wise projection operator. Letting
δS be the Sth largest absolute value of (zzz = xxxk−1

p−1 −
η∇f̃(xxxk−1

p−1,nnn
k−1)), PS(zzz) is defined as [55]

PS(zi) =

{
zi, if |zi| ≥ δS,

0, otherwise .
(16)
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Fig. 1: Comparison of sign and tanh functions.

In addition, ∇f̃(xxx,nnnk−1) is the gradient of f̃(xxx,nnnk−1) with
respect to (w.r.t.) xxx:

∇f̃(xxx,nnnk−1)

= −2cAAA⊤
(
(sssk−1−tanhc(AAAxxx))⊙(111− tanhc(AAAxxx)

2)
)

+ 2µ(xxx− xxxk−1
p−1), (17)

where sssk−1 = yyy−nnnk−1. Herein, the superscript (·)k indicates
the iteration number in the PAM process, while the subscript
(·)p signifies the pth iteration in the PGD procedure. For the
initialization of xxxk−1

0 , we set xxxk−1
0 = xxxk−1. It is worth noting

that in iterative multi-variable optimization, optimizing one
part to perfection while fixing remaining variables is not so
beneficial [56]. This is because a perfect optimization of one
part might be rendered obsolete when the other part is altered.
Therefore, in practice, the iteration number to optimize xxxk−1

p

is set as Pmax = 50, that is, xxxk = xxxk−1
50 is an approximate

solution to (14a).
For (14b), under the definition of eeek = yyy − tanhc(AAAxxx

k), it
is re-expressed as

nnnk = argmin
nnn

∥eeek −nnn∥22 + γ∥nnn∥0 + µ∥nnn−nnnk−1∥22. (18)

We see that nk
i only depends on eki and nk−1

i , thereby (18)
can be solved in an entry-wise manner:

nk
i = argmin

ni

(eki − ni)
2 + γ|ni|0 + µ(ni − nk−1

i )2. (19)

One optimal solution to (19) is given by (see Appendix A)

nk
i=

{
eki +µnk−1

i

1+µ , γ < (eki )
2 + µ(nk−1

i )2−µ(nk−1
i −eki )

2

1+µ ,

0, otherwise.
(20)

The proposed approach is referred to as robust one-bit
CS (ROCS), whose steps are summarized in Algorithm 1.
Note that based on Theorem 1, ROCS cannot have a uniform
recovery guarantee.
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Algorithm 1 ROCS

Input: YYY ∈ RM , AAA ∈ RM×N , sparsity level S, µ = 10−8,
η = 10−5, γ = 1.92, c = 104, Pmax = 50, and Kmax = 20

Initialize: Randomize xxx1 = AAA⊤yyy
∥AAA⊤yyy∥2

and nnn0 = 000
for k = 1, 2, . . . ,Kmax do

1) xxxk−1
0 = xxxk−1

for p = 1, . . . , Pmax do
2) Update xxxk−1

p via (15)
end for
3) Update xxxk = xxxk−1

p

4) Update nnnk via (20)
Stop if stopping criterion is met.

end for
Output: xxxKmax

∥xxxKmax∥2

C. Convergence Analysis

In this subsection, the convergence behavior of the proposed
ROCS is analyzed. The first one exhibits the convergence of
the objective values.

Theorem 2. Let f(xxxk,nnnk) be the objective value generated
by Algorithm 1. Then, the following hold:

(i) f̂(xxx) = f̃(xxx,nnnk−1) + IS(xxx) = f(xxx,nnnk−1) + µ∥xxx −
xxxk−1
p−1∥22 + IS(xxx) is a proper lower semicontinuous func-

tion with a lower bound and satisfies the KŁ property,
where IS(xxx) is an indicator function, such that IS(xxx) =
0 with ∥xxx∥0 ≤ S, otherwise, IS(xxx) = +∞. In addition,
f̃(xxx,nnnk−1) has a Lipschitz gradient.

(ii) When 0 < η < 1/Lf̃ with Lf̃ being the Lips-
chitz constant of ∇f̃(xxx,nnnk−1) w.r.t. xxx, the sequence
{f(xk,nk)}k∈N is nonincreasing.

(iii) f(xxxk,nnnk) is lower bounded.
As a result, {f(xxxk,nnnk)}k∈N is convergent.

Proof: See Appendix B.

We then analyze the sequence behavior in Theorem 3.

Theorem 3. Let {(xxxk,nnnk)}k∈N be the sequence generated by
Algorithm 1, where we assume that (14a) is solved exactly.
Additionally, {(xxxk,nnnk)}k∈N is considered to be bounded.
Then, the following hold:

(i)

lim
Kmax→+∞

Kmax∑
k=1

(∥nnnk −nnnk−1∥22 + ∥xxxk − xxxk−1∥22)

< +∞. (21)

Hence, we obtain

lim
Kmax→+∞

(∥nnnk −nnnk−1∥2 + ∥xxxk − xxxk−1∥2) = 0. (22)

(ii) The objective function f is bounded below and has
the KŁ property, and the function (x,n) 7→ ∥y −
tanhc(Ax) − n∥22 has a Lipschitz gradient. Then, the
sequence {(xxxk,nnnk)}k∈N converges to a critical point
of (13).

(iii) The ROCS converges with at least a sublinear rate.

Proof: See Appendix C.

D. Estimation Error Bound

It is worth mentioning that one can also utilize radii of cells
to obtain an upper bound for the estimation error [38], [57]. In
this subsection, we exploit an alternative approach to analyze
a recovery error bound of ROCS in the following lemma.

Lemma 1. We denote xxx∗ and xxx as the ground truth and its
estimate, respectively. Besides, the measurement yyy is corrupted
by noise ñnn ∼ N (0, σ2) with AAA ∼ N (0, 1)M×N , and M
makes (10) hold. Then, the estimation error bound satisfies

1

π
arccos⟨xxx,xxx∗⟩ ≤ L̄

M
+

σ

2
+ τ + ϵ, (23)

where L̄ the estimated number of wrong signs.

Proof: See Appendix D.
We now analyze how L̄,MMM,σ, and ϵ influence the recovery

error bound. We consider a fixed probability of 1−e−2Mτ2−β,
such that τ is a constant in (23). It is apparent that higher-
intensity noise yields a larger error bound. When ϵ decreases,
the error bound becomes more stringent. Since the initialized
γ impacts L̄, it also affects the error bound. Intuitively, an
increase in L̄ leads to a higher error bound. Practically, the
optimal estimation performance is contingent upon the ground-
truth value L∗. Consequently, the estimation accuracy does
not increase monotonically as L̄ increases from 0. That is,
the trajectories of estimation performance and error bound are
inconsistent with changes in L̄.

E. Computational Complexity

In this subsection, we study the computational complexity
of ROCS. The complexity of updating xxxk is O(Pmax(MN +
N log(N))), where N log(N) is involved to sort |zzz| in de-
scending order and then determine the value of the Sth
element. In addition, computing nnnk has a complexity of
O(MN). As a result, the overall computational requirement
is O(KmaxPmax(MN +N log(N))).

F. Selection of γ

To facilitate investigation of γ, we set the proximal param-
eter µ to be 0. Consequently, we can write (20) as

nk
i=

{
eki ,

√
γ ≤ |eki |,

0, otherwise.
(24)

As eeek = yyy−tanhc(AAAxxx
k), we have |eki | ∈ [0, 2]. If |eki | is small,

then the corresponding entry yi can be considered to have the
correct sign. When |eki | → 2, it indicates that yi has been
flipped. Therefore,

√
γ ∈ (0, 2] can be deemed as a threshold

to differentiate the correct and incorrect measurements from
the fitting error. Furthermore, if c is selected as a large value,
then |eki | tends to approach either 0 or 2. In such a case,

√
γ

should be set close to 2.
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Fig. 2: RRSE versus
√
γ in different flipping ratios.

III. Experiment Results

In this section, we evaluate the proposed ROCS using
synthetic data and then apply it to DOA estimation. All
simulations are implemented using MATLAB (R2019a) on a
computer with Inter(R) Core(TM) i7- 8700 3.2GHz CPU and
16 GB memory.

A. Synthetic Data

The default settings are M = 1000, N = 2000, and S = 5,
such that the measurement matrix is AAA ∈ R1000×2000 whose
entries follow independent and identically distributed (i.i.d.)
Gaussian distribution. Besides, we randomly select 5 indices
from [1, 2000] and then initialize their values with Gaussian
distribution to obtain a sparse vector xxx∗ ∈ R2000 with
normalization. Then, we get noise-free yyy∗ ∈ R1000 computed
by sgn(AAAxxx∗). As the additive noise nnn cannot yield a precise
number of sign flips, we choose a portion of measurements at
random and then flip their signs. Therefore, the noise level is
measured by the ratio (denoted as p) of the number of sign
flips over that of measurements. The default noise level is
p = 0.1.

On the other hand, the recovery performance is evaluated
using relative root square error (RRSE):

RRSE = E
{∥xxx∗ − xxx∥2

∥xxx∗∥2

}
= E{∥xxx∗ − xxx∥2}, (25)

where xxx ∈ R2000 is the restored sparse signal and E{·} denotes
the mean based on 100 Monte Carlo trials. Note that a small
RRSE indicates good recovery performance.

1) Investigation of γ
We have analyzed the potential values of

√
γ in Section II.

In this subsection, we study the impact of
√
γ on recovery

performance via numerical experiments. The results are plotted
in Fig. 2, where the flipping ratio is selected with 5 levels.
It is seen that RRSEs have little changes with p < 0.1,
indicating that the restoration performance is not sensitive to√
γ when there is a small portion of sign flips. If p is large,

Fig. 3: RRSE of different algorithms in 10% sign flips.

then we require an appropriate
√
γ to differentiate the correct

and incorrect measurements from the fitting error. Therefore,
RRSEs change a lot as

√
γ increases from 1.6 to 2.0, and attain

the lowest value at
√
γ = 1.9. These results are consistent with

our theoretical analysis.

2) Performance Comparison
We compare the ROCS with seven contemporary algo-

rithms, namely, BIHT-ℓ1 [10], BIHT-ℓ2 [10], AOP [30],
GPSP [11], weighted primal dual active set algorithm with
continuation (WPDASC) [33], minimax concave penalty with
ℓ1-norm (MCP-ℓ1) [34], normalized ℓ1-Shannon entropy func-
tion (ℓ1-SEF) [18], and learned generalized BIHT (LG-
BIHT) [39]. It is worth mentioning that AOP and GPSP
require the number of sign flips as their inputs. Consequently,
accurate-AOP (A-AOP) indicates that AOP is given an exact
pM value, while inaccurate-AOP (I-AOP) signifies that AOP
has an inexact information ((p+0.02)M). In addition, GPSP
is provided with the exact pM .

We first compare different methods with p = 0.1 in Fig. 3,
where the results of 100 trials are shown in a box-plot.
It is seen that the restoration performance of ℓ1-SEF and
BIHT-ℓ1 are unsatisfactory. Compared with BIHT-ℓ2, GPSP,
I-AOP, WPDASC, and MCP-1-bit, A-AOP and ROCS obtain
better reconstruction. We observe the performance of AOP
is heavily dependent on the prior number of wrong signs.
If such information is not accurate, then AOP might not
attain satisfactory recovery. Furthermore, ROCS without the
number of sign flips outperforms A-AOP that requires such
information.

We then investigate the impact of different flipping ratios
on the reconstruction performance. The results are plotted
in Fig. 4, where p varies from 0 to 0.2. It is seen that
the performance of ℓ1-SEF, BIHT-ℓ1, and LG-BIHT severely
degrades as the value of p increases. When p > 0.14,
WPDASC experiences significant performance degradation.
While BIHT-ℓ2, GPSP, AOP, MCP-1-bit, and ROCS are able
to attain accurate recovery under high flipping ratios. Among
these algorithms, the RRSEs of the proposed method are
smallest in all flipping ratios.
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Fig. 5: RRSE versus sparsity in 10% sign flips.

Besides, the effect of sparsity on the restoration is studied
in Fig. 5, where the sparsity covers [1, 10]. The results of ℓ1-
SEF, BIHT-ℓ1, and LG-BIHT are not shown as their RRSEs
are very large, which is not conducive to distinguish the
performance of other algorithms. It is observed that RRSEs
of all methods increase with the sparsity level. Among these
seven approaches, ROCS and AOP with accurate pM value
are superior to BIHT-ℓ2, GPSP, I-AOP, WPDASC, and MCP-
1-bit. Compared with A-AOP, ROCS shows a little advantage.

Furthermore, we compare the recovery performance of
different approaches when the measurement number varies
from 800 to 1600. The results are shown in Fig. 6 with p = 0.1
and S = 5. It is observed that ROCS shows remarkable
superiority over its competitors.

B. Direction-of-Arrival Estimation

A well-known application of 1-bit CS is DOA estimation
and we apply ROCS to this task.

800 1000 1200 1400 1600
Measurement number

0

0.05

0.1

0.15

0.2

R
R

S
E

Fig. 6: RRSE versus measurement number with 10% sign flips.

In the pioneering work [58], Bar–Shalom and Weiss have
addressed this issue and proposed reconstructing the unquan-
tized (original) covariance matrix based on the arcsine law.
This reconstruction scheme has been subsequently utilized for
DOA estimation in sparse arrays [59], [60]. Furthermore, [61]
derives a conservative approximation of the corresponding
Cramér-Rao bound. Additionally, extensive works focus on co-
variance recovery [62]–[66] and then the estimated covariance
matrix can be exploited for DOA estimation. Furthermore,
one-bit Hankel matrix completion has been applied to DOA
estimation [67].

1) Problem Formulation
Consider a uniform linear array (ULA) equipped with M

sensors, where the spacing between adjacent sensors is d. It is
essential that the spacing satisfies d ≤ λ/2 in order to avoid
phase ambiguity, where λ is the wavelength of the incoming
signal. Assume S far-field, uncorrelated narrow-band signals
are impinging upon the array from distinct directions θθθ =
[θ1, θ2, . . . , θS ]

⊤. The discrete-time complex-valued base-band
signal received by the mth sensor at time instant q is modeled
as [68]

ỹm(q) =

S∑
s=1

xs(q)e
j2π(m−1) sin(θs)

d
λ + nm(q), (26)

where xs(q) denotes the sth source signal, j =
√
−1 is the

imaginary unit, and nm(q) represents the additive noise.
Organizing the output signal of the M sensors into the

vector form, we have

ỹyyq = AAAxxxq +nnnq, (27)

where ỹyyq = [ỹ1(q), . . . , ỹM (q)]⊤ ∈ CM is the received signal
vector, xxxq = [x1(q), . . . , xS(q)]

⊤ ∈ CS is the source vector,
nnnq = [n1(q), . . . , nM (q)]⊤ ∈ CM is the noise vector, and
AAA ∈ CM×S is the array manifold matrix

AAA = [aaa(θ1), . . . , aaa(θS)]. (28)

with aaa(θs) being the steering vector given by
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aaa(θs) =
[
1, ej2π sin(θs)

d
λ , . . . , ej2π(M−1) sin(θs)

d
λ

]⊤
. (29)

Collecting Q snapshots, the received signal is represented as

ỸYY = [ỹyy1, . . . , ỹyyQ]

= AAAXXX +NNN. (30)

where XXX = [xxx1,xxx2, . . . ,xxxQ] ∈ CS×Q and NNN =
[nnn1,nnn2, . . . ,nnnQ] ∈ CM×Q. Then, the quantized signal with
1-bit ADC is expressed as

YYY = csgn(ỸYY ) = sgn(ℜ(ỸYY )) + jsgn(ℑ(ỸYY )), (31)

where ℜ(·) and ℑ(·) are the real and imaginary parts of a
complex number, respectively.

To find θθθ, we discretize the potential DOA range (i.e.
[−90◦, 90◦]) into S̄ grids:

θθθ ⊂ θ̄θθ = [θ̄1, θ̄2, . . . , θ̄S̄ ]
⊤, (32)

where θ̄θθ is not quantized. It is worth pointing out that the
quantization of θ̄θθ is able to improve transmission process [69].
Then, the quantized signal is re-expressed as

YYY = csgn(ĀAAX̄XX +NNN), (33)

where ĀAA ∈ CM×S̄ is the extended array manifold

ĀAA = [aaa(θ̄1), . . . , aaa(θ̄S̄)] (34)

and X̄XX ∈ CS̄×Q is the extended signal matrix, which is a row-
sparse matrix. Specifically, its ith row equals the jth row of
XXX if θ̄i = θj . Furthermore, the quantized signal (33) can be
rewritten into the real-valued form [70]

YYY r = sgn(ĀAArX̄XXr +NNNr), (35)

where

YYY r = [ℜ(YYY );ℑ(YYY )], (36a)

ĀAAr = [ℜ(ĀAA),−ℑ(ĀAA);ℑ(ĀAA),ℜ(ĀAA)], (36b)

X̄XXr = [ℜ(X̄XX);ℑ(X̄XX)], (36c)
NNNr = [ℜ(NNN);ℑ(NNN)]. (36d)

The DOAs can be estimated from

min
X̄XXr,NNNr

∥YYY r − tanhc(ĀAArX̄XXr)−NNNr∥2F + γ∥NNNr∥0

s.t. ∥X̄XX∥2,0 ≤ S, (37)

where ∥X̄XX∥2,0 = ∥[
∑Q

j=1 x
2
1,j ,

∑Q
j=1 x

2
2,j , . . . ,

∑Q
j=1 x

2
S̄,j

]⊤∥0
is the ℓ2,0-norm. It is worth mentioning that the sparsity
constraint is implemented on the complex-valued X̄XX . Besides,
the normalization does not impact the result of DOA
estimation and thus the energy constraint is omitted in (37).
For the ℓ2,0-norm constraint, we first compute the ℓ2-norm of
each row of X̄XX to obtain a vector that is the spatial frequency
spectrum. We then retain the first S largest peaks, and set the
other entries to 0.

2) Simulation Setting
Unless stated otherwise, the signals are Gaussian distributed

with equal power, and the ULA is comprised of M = 20
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Fig. 7: MSE versus SNR in zero-mean white Gaussian noise.
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Fig. 8: MSE versus antenna number at SNR = 0dB.

sensors with the inter-element spacing of d = 0.5λ. Besides,
the number of snapshots is Q = 32, and the DOAs of three
signals are θ1 = −30◦, θ2 = 5◦, and θ3 = 20◦. In addition, we
add the zero-mean white Gaussian noise into the clean signal,
and the signal-to-noise ratio (SNR) is defined as

SNR = 10 log10

(∥AAAXXX∥2F
σ2

)
, (38)

where σ2 is the noise variance. Furthermore, the estimation
performance is measured by the mean square error (MSE) in
dB, which is defined as

MSE = 10 log10

( 1

Mc

Mc∑
m=1

S∑
s=1

(θ̂s,m − θs)
2

S

)
. (39)

Here, Mc = 100 is the number of Monte Carlo trials and θ̂s,m
is the sth DOA estimate at the mth trial.

3) Performance Comparison
The proposed method is compared with five popular algo-

rithms, namely, multiple signal classification (MUSIC) [71],
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1-bit MUSIC [68], complex-valued BIHT based on ℓ2-
norm (CBIHT-ℓ2) [70], 1-bit atomic norm denoising (1-
bit AND) [72], and 1-bit-off-grid iterative reweighted (1-bit
OGIR) [73]. Herein, the results of MUSIC depend on the
unquantized measurements.

We first evaluate all algorithms under different SNRs, and
the results are plotted in Fig. 7. We see that MUSIC attains
smallest MSEs in all SNRs since its received signal does
not have the quantization error. ROCS and 1-bit OGIR attain
comparable estimation performance in low SNRs, while ROCS
outperforms 1-bit OGIR in high SNRs. Overall, ROCS exhibits
superiority over other 1-bit algorithms.

The performance of six methods under different numbers of
antennas is investigated in Fig. 8 at SNR = 0dB. It is observed
that MUSIC still attains the best performance, while ROCS
yields smaller MSEs than other 1-bit algorithms.

Furthermore, we compare all methods with different num-
bers of targets. The results are shown in Fig. 9, where the
DOAs of the fourth and fifth signals are θ4 = −15◦ and
θ5 = 30◦. When the target number increases, the estimation
performance of 1-bit MUSIC, CBIHT-ℓ2, and 1-bit AND
seriously degrades, while MUSIC, 1-bit OGIR, and ROCS still
achieve satisfactory performance for 5 targets. Among the 1-bit
algorithms, ROCS attains the lowest MSEs as target number
varies from 1 to 5.

IV. Conclusion

In this article, we reformulated the quantized measurement
model for 1-bit CS, such that the sparsity property of the noise
vector after quantization can be utilized to enhance restoration.
We then formulated the corresponding optimization problem
using ℓ2-norm and ℓ0-norm, where the former is exploited
to restrict the fitting error, while the latter is designed as
a penalty term and constraint for sparse noise and desired
signal, respectively. Besides, we adopted proximal alternating
minimization and projected gradient descent to tackle the
resultant optimization task. Although the proposed ROCS has
an auxiliary parameter γ, its performance is not sensitive to

γ. We analyzed the practical significance of γ. Specifically, its
square root can be considered as a threshold to differentiate
the correct and incorrect signs in the received signal. We
also analyzed convergence behavior of ROCS. Specifically, we
showed that the objective value sequence is convergent, while
the variable sequence converges to a critical point. Simulation
results demonstrated that ROCS achieves better performance
than popular algorithms in terms of recovery accuracy with
sign flips. ROCS was also applied to DOA estimation and
was shown to outperform the SOTA methods based on 1-bit
quantization.

As our future works, we will extend the proposed robust
approach in other applications of 1-bit signal processing,
including phase retrieval [74], quadratic CS [75], high dynamic
range imaging [76], and so on.

Appendix A
Derivation of Solution to (19)

To find the solution to (19), we discuss the following two
cases:

(i) For ni = 0, the minimum objective function value is
(eki )

2 + µ(nk−1
i )2

(ii) For ni ̸= 0, the minimizer is ni =
eki +µnk−1

i

1+µ and the
corresponding function value is

inf
ni

{(eki − ni)
2 + λ|ni|0 + µ(ni − nk−1

i )2}

=
µ(nk−1

i − eki )
2

1 + µ
+ λ. (40)

When this minimum is less than that with ni = 0, the solution
to (19) should be nk

i =
eki +µnk−1

i

1+µ , otherwise, nk
i = 0. To

summarize, we have

nk
i=

{
eki +µnk−1

i

1+µ , λ ≤ (eki )
2 + µ(nk−1

i )2−µ(nk−1
i −eki )

2

1+µ

0, otherwise.
(41)

Note that both nk
i =

eki +µnk−1
i

1+µ and nk
i = 0 are the optimal

solution when λ = (eki )
2+µ(nk−1

i )2− µ(nk−1
i −eki )

2

1+µ . Since nk
i

is independent of nk
j for i ̸= j, the optimal solution of each

element results in optimal nnnk to (19). The proof is complete.
■

Appendix B
Proof of Theorem 2

A. Property (i)

We have

f̂(xxx) = f̃(xxx,nnnk−1) + IS(xxx) (42a)

= ∥yyy − tanhc(AAAxxx)−nnnk−1∥22 + µ∥xxx− xxxk−1
p−1∥22 + IS(xxx),

(42b)

It is clear that f̂ is lower semicontinuous and lower bounded.
Besides, it is known that tanhc(·) function is definable in an
o-minimal structure [46], and ∥xxx∥0 ≤ S is a nonempty closed
semi-algebraic set [77]. Therefore, f̂(xxx) is definable in an o-
minimal structure, implying that it has the KŁ property [46].
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Then, we prove that f̃(·,nnnk−1) has a Lipschitz gradient. Its
first and second derivatives are

∇xxxf(xxx,nnn
k−1)= −2cAAA⊤

(
(sss−tanhc(AAAxxx))⊙(111−tanhc(AAAxxx)

2)
)

+ 2µ(xxx− xxxk−1
p−1), (43a)

∇2
xxxf(xxx,nnn

k−1)= 2c2(DDD1AAA)⊤AAA+ 4c2(DDD2AAA)′AAA+ 2µIII, (43b)

where sss = yyy − nnnk−1, DDD1 = diag
(
(111 − tanhc(AAAxxx)

2) ⊙

(111 − tanhc(AAAxxx)
2)
)

, and DDD2 = diag
(
(sss − tanhc(AAAxxx)) ⊙

tanhc(AAAxxx)⊙ (111− tanhc(AAAxxx)
2)
)

. As −1 ≤ tanhc(aaai,:xxx) ≤ 1

for i ∈ [1,M ], we obtain

| tanhc(aaai,:xxx)(1− tanhc(aaai,:xxx)
2)| < 1

2
, (44a)

∥DDD1∥2 ≤ 1, (44b)

∥DDD2∥2 ≤ 1

2
∥diag(sss− tanhc(AAAxxx))∥2

≤ 1

2
(∥diag(sss)∥2 + ∥diag(− tanhc(AAAxxx))∥2)

≤ 1

2
(1 + 1) = 1. (44c)

Moreover, we get

∥∇2
xxxf(xxx,nnn

k−1)∥2
= ∥2c2(DDD1AAA)⊤AAA+ 4c2(DDD2AAA)⊤AAA+ 2µIII∥2 (45a)

≤ 2c2∥(DDD1AAA)⊤AAA∥2+4c2∥(DDD2AAA)⊤AAA∥2 + 2µ (45b)

≤ 2c2∥DDD1∥2∥AAA∥22 + 4c2∥DDD2∥2∥AAA∥22 + 2µ (45c)

≤ 6c2∥AAA∥22 + 2µ. (45d)

When ∥AAA∥F is finite, ∥AAA∥22 ≤ ∥AAA∥2F < +∞ must hold,
resulting in 6c2∥AAA∥22 + 2µ < +∞. As a result, the function
f̃(·,nnnk−1) has a Lipschitz gradient. The proof is complete. ■

B. Property (ii)

For (14a), it is equivalent to

min
xxx

f̂(xxx). (46)

Since (46) is solved using (15) and thus based on [77], we
have

f̂(xxxk−1
p )− f̂(xxxk−1

p−1) ≤ −
af̃
2
∥xxxk−1

p − xxxk−1
p−1∥22, (47)

where af̃ > 6c2∥AAA∥22 + 2µ.
By induction on p, we further obtain

f̂(xxxk)− f̂(xxxk−1) ≤
Pmax∑
p=1

−
af̃
2
∥xxxk−1

p − xxxk−1
p−1∥22 (48a)

⇔ f(xxxk,nnnk−1)− f(xxxk−1,nnnk−1)

≤ −µ∥xxxk − xxxk−1∥22 −
Pmax∑
p=1

af̃
2
∥xxxk−1

p − xxxk−1
p−1∥22, (48b)

where µ > 0, xxxk−1
0 = xxxk−1 and xxxk = xxxk−1

Pmax
. We see that

updating xxx does not increase the objective value.

On the other hand, as (20) seeks one optimal solution
of (14b), we have

∥yyy − tanhc(AAAxxx
k)−nnnk∥22+λ∥nnnk∥0+µ∥nnnk −nnnk−1∥22

≤ ∥yyy − tanhc(AAAxxx
k)−nnnk−1∥22 + λ∥nnnk−1∥0 (49a)

⇔f(xxxk,nnnk)−f(xxxk,nnnk−1) ≤ −µ∥nnnk −nnnk−1∥22. (49b)

Combining (48b) and (49b) results in

f(xxxk,nnnk)− f(xxxk−1,nnnk−1) ≤ 0, (50)

which indicates that f(xxxk,nnnk) is nonincreasing after updating
the variables. The proof is complete. ■

C. Property (iii)

Since f(xxx,nnn) is comprised of two terms based on ℓ2-norm
and ℓ0-norm, respectively, f(xxxk,nnnk) ≥ 0 must hold.

As a result, based on Properties (ii) and (iii), the conver-
gence of {f(xxxk,nnnk)}k∈N is guaranteed. The proof is complete.

■

Appendix C
Proof of Theorem 3

A. Property (i)

From (48b), we get

f(xxxk−1,nnnk−1)− f(xxxk,nnnk−1) ≥ µ∥xxxk − xxxk−1∥22. (51)

Combining (51) and (49b) yields

∥nnnk −nnnk−1∥22 + ∥xxxk − xxxk−1∥22

≤ f(xxxk−1,nnnk−1)− f(xxxk,nnnk)

µ
. (52)

By induction on k, we obtain

lim
Kmax→+∞

Kmax∑
k=1

(∥nnnk −nnnk−1∥22 + ∥xxxk − xxxk−1∥22)

≤ lim
Kmax→+∞

f(xxx0,nnn0)− f(xxxKmax ,nnnKmax)

µ

< +∞. (53)

Therefore, under the assumption that {(xxxk,nnnk)}k∈N is
bounded, we have

lim
Kmax→+∞

(∥nnnk −nnnk−1∥2 + ∥xxxk − xxxk−1∥2) = 0. (54)

The proof is complete. ■

B. Property (ii)

It is obvious that f is bounded below. In addition, as the
ℓ0-norm is semi-algebraic, it is also definable in an o-minimal
structure [78]. Combining Property (i) in Appendix B, we
conclude that f has the KŁ property.

On the other hand, we have proved the following function
has a Lipschitz gradient:

f̃(xxx,nnnk−1) = ∥yyy − tanhc(AAAxxx)−nnnk−1∥22 + µ∥xxx− xxxk−1
p−1∥22.

(55)
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Therefore, the function (x,n) 7→ ∥y − tanhc(Ax) − n∥22
has a Lipschitz gradient w.r.t. xxx. We then prove that it has a
Lipschitz gradient w.r.t. nnn:∥∥∥∂2∥yyy− tanhc(AAAxxx)−nnn∥22

∂2nnn

∥∥∥
2
=∥2III∥2 ≤ 2, ∀nnn ∈ RM . (56)

As a result, the function (x,n) 7→ ∥y − tanhc(Ax) − n∥22
has a Lipschitz gradient.

Furthermore, as minxxx,nnn f(xxx,nnn) is solved using PAM and
(xxxk,nnnk)k∈N is bounded, {(xxxk,nnnk)}k∈N converges to a critical
point of (13) based on Theorem 6.2 in [77]. The proof is
complete. ■

C. Property (iii)
As f has the KŁ property, based on Theorem 1 in [78], our

method converges at least sublinearly. The proof is complete.
■

Appendix D
Proof of Lemma 1

Prior to analyzing the upper error bound of ROCS, we
introduce the following lemma.

Lemma 2. Given two vectors aaa ∈ RM and bbb ∈ RM , we have

∥aaa+ bbb∥0 ≤ ∥aaa∥0 + ∥bbb∥0. (57)

Proof: We assume that ∥aaa∥0 = S1 with Φ1 = {ai|ai ̸= 0},
and ∥bbb∥0 = S2 with Φ2 = {bi|bi ̸= 0} . Then, we discuss the
following two cases:

(i) S1 + S2 < M : When Φ1 ∩ Φ2 = ϕ, ∥aaa + bbb∥0 reaches
its maximum at S1 + S2, thereby satisfying the equality
condition.

(ii) S1 + S2 ≥ M : It is apparent that the largest value of
∥aaa+ bbb∥0 is M , which meets the inequality condition.

■

Let ỹyy = yyy−nnn in the recovery problem (12). Then, ỹyy can be
considered as the measurement without noise corruption and
thus the proposed method aims at seeking a solution that not
only achieves consistency with the denoised measurement but
also satisfies the sparsity condition. Therefore, based on (11)
in Theorem 1, we have

1

M
∥sgn(AAAxxx∗ + ñnn)− sgn(AAAxxx∗)∥0 ≤ σ

2
+ τ. (58)

Besides, according to the bounded angle error [10], we obtain

1

π
arccos⟨x̄xx,xxx∗⟩ ≤ 1

M
∥sgn(AAAx̄xx)− sgn(AAAxxx∗)∥0+ϵ (59a)

≤ 1

M
(∥sgn(AAAx̄xx)−sgn(AAAxxx∗+n̄nn)∥0

+ ∥sgn(AAAxxx∗+n̄nn)−sgn(AAAxxx∗)∥0) + ϵ (59b)

≤ 1

M
∥sgn(AAAx̄xx)− sgn(AAAxxx∗ + n̄nn)∥0 +

σ

2
+ τ + ϵ (59c)

≤ 1

M
(∥sgn(AAAx̄xx)− yyy∥0

+ ∥yyy − sgn(AAAxxx∗ + n̄nn)∥0) +
σ

2
+ τ + ϵ (59d)

=
1

M
∥sgn(AAAx̄xx)− yyy∥0 +

σ

2
+ τ + ϵ. (59e)

Additionally, we consider a special situation in which γ
gradually approaches 0 for a sufficient number of iterations.
Let us review (20):

nk
i=

{
eki +µnk−1

i

1+µ , γ < (eki )
2 + µ(nk−1

i )2 − µ(nk−1
i −eki )

2

1+µ ,

0, otherwise.
(60)

When γ → 0 and µ → 0, we have

∥sgn(AAAx̄xx)− yyy∥0 = ∥nnn∥0. (61)

That is, ∥sgn(AAAx̄xx) − yyy∥0 equals the estimated number of
wrong signs, denoted as L̄. Since our optimization problem is
nonconvex, the value of L̄ is affected by the initialized value
of γ. Consequently, we obtain

1

π
arccos⟨x̄xx,xxx∗⟩ ≤ L̄

M
+

σ

2
+ τ + ϵ. (62)

The proof is complete. ■

References

[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[2] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar.
2008.

[3] P. T. Boufounos and R. G. Baraniuk, “1-bit compressive sensing,” in
Proc. 42nd Annu. Conf. Inf. Sci. Syst., Princeton, NJ, USA, Mar. 2008,
pp. 16–21.

[4] B. Zhao, L. Huang, J. Li, M. Liu, and J. Wang, “Deceptive SAR jamming
based on 1-bit sampling and time-varying thresholds,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 3, pp. 939–950,
Feb. 2018.

[5] B. Zhao, L. Huang, and W. Bao, “One-bit SAR imaging based on single-
frequency thresholds,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9,
pp. 7017–7032, Apr. 2019.

[6] P. Xiao, B. Liao, and N. Deligiannis, “DeepFPC: A deep unfolded
network for sparse signal recovery from 1-bit measurements with
application to DOA estimation,” Signal Process., vol. 176, p. 107699,
Nov. 2020.

[7] M. Chen, Q. Li, X. P. Li, L. Huang, and M. Rihan, “One-bit doa
estimation for deterministic signals based on ℓ2,1-norm minimization,”
IEEE Trans. Aerosp. Electron. Syst., Jan. 2024, (Early Access), DOI:
10.1109/TAES.2023.3348084.

[8] C.-H. Chen and J.-Y. Wu, “Amplitude-aided 1-bit compressive sensing
over noisy wireless sensor networks,” IEEE Wireless Commun. Lett.,
vol. 4, no. 5, pp. 473–476, Jun. 2015.

[9] B. Sun and Y. Ni, “A training-free one-bit compressed sensing frame-
work for wireless neural recording,” IEEE Commun. Lett., vol. 21, no. 8,
pp. 1775–1778, 2017.

[10] L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “Robust 1-
bit compressive sensing via binary stable embeddings of sparse vectors,”
IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2082–2102, Apr. 2013.

[11] S. Zhou, Z. Luo, N. Xiu, and G. Y. Li, “Computing one-bit compres-
sive sensing via double-sparsity constrained optimization,” IEEE Trans.
Signal Process., vol. 70, pp. 1593–1608, Mar. 2022.

[12] K. Knudson, R. Saab, and R. Ward, “One-bit compressive sensing with
norm estimation,” IEEE Trans. Inf. Theory, vol. 62, no. 5, pp. 2748–
2758, May 2016.

[13] A. Ameri, A. Bose, J. Li, and M. Soltanalian, “One-bit radar processing
with time-varying sampling thresholds,” IEEE Trans. Signal Process.,
vol. 67, no. 20, pp. 5297–5308, Sep. 2019.

[14] C. Xu and L. Jacques, “Quantized compressive sensing with RIP
matrices: The benefit of dithering,” Inf. Inference: A J. IMA, vol. 9,
no. 3, pp. 543–586, 2020.

[15] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.,
vol. 38, no. 1, pp. 49–95, Mar. 1996.

[16] X. P. Li, Z.-L. Shi, C.-S. Leung, and H. C. So, “Sparse index tracking
with k-sparsity or ε-deviation constraint via ℓ0-norm minimization,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 12, pp. 10 930–
10 943, Dec. 2022.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2024.3387346

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 16,2024 at 12:35:56 UTC from IEEE Xplore.  Restrictions apply. 



10th-April-2024 12

[17] H. Wang, X. Huang, Y. Liu, S. Van Huffel, and Q. Wan, “Binary
reweighted ℓ1-norm minimization for one-bit compressed sensing,” in
Proc. 8th Int. Joint Conf. Biomed. Eng. Syst. Technol., Lisbon, Portugal,
Jan. 2015, pp. 206–210.

[18] P. Xiao, B. Liao, and J. Li, “One-bit compressive sensing via Schur-
concave function minimization,” IEEE Trans. Signal Process., vol. 67,
no. 16, pp. 4139–4151, Aug. 2019.

[19] K. Kreutz-Delgado and B. D. Rao, “A general approach to sparse
basis selection: Majorization, concavity, and affine scaling,” Univ. Calif,
SanDiego, CA, USA, Tech. Rep., 1997.

[20] Y. Zhong, C. Xu, B. Zhang, J. Hou, and J. Wang, “One-bit compressed
sensing via total variation minimization method,” Signal Process., vol.
207, p. 108939, Jun. 2023.

[21] D. Needell and R. Ward, “Stable image reconstruction using total
variation minimization,” SIAM J. Imaging Sci., vol. 6, no. 2, pp. 1035–
1058, Jun. 2013.

[22] R. G. Baraniuk, S. Foucart, D. Needell, Y. Plan, and M. Wootters,
“Exponential decay of reconstruction error from binary measurements of
sparse signals,” IEEE Trans. Inf. Theory, vol. 63, no. 6, pp. 3368–3385,
Jun. 2017.

[23] A. Eamaz, F. Yeganegi, and M. Soltanalian, “Matrix completion from
one-bit dither samples,” arXiv:2310.03224, 2023.

[24] ——, “Matrix completion via memoryless scalar quantization,”
arXiv:2311.05052, 2023.

[25] A. Eamaz, K. V. Mishra, F. Yeganegi, and M. Soltanalian, “UNO:
Unlimited sampling meets one-bit quantization,” IEEE Trans. Signal
Process., vol. 72, pp. 997–1014, Jan. 2024.

[26] A. Eamaz, F. Yeganegi, D. Needell, and M. Soltanalian, “ORKA:
Accelerated Kaczmarz algorithms for signal recovery from one-bit
samples,” arXiv:2301.03467, 2022.

[27] A. Eamaz, F. Yeganegi, and M. Soltanalian, “One-bit matrix completion
with time-varying sampling thresholds,” in Poc. Int. Confe. Sampling
Theory and Applications, New Haven, CT, USA, Jul. 2023, pp. 1–5.

[28] F. Yeganegi, A. Eamaz, and M. Soltanalian, “Low-rank matrix sensing
with dithered one-bit quantization,” arXiv:2309.04045, 2023.

[29] A. Eamaz, K. V. Mishra, F. Yeganegi, and M. Soltanalian, “Unlimited
sampling via one-bit quantization,” in Proc. Int. Conf. Sampling Theory
Appl., New Haven, CT, USA, Nov. 2023, pp. 1–5.

[30] M. Yan, Y. Yang, and S. Osher, “Robust 1-bit compressive sensing using
adaptive outlier pursuit,” IEEE Trans. Signal Process., vol. 60, no. 7,
pp. 3868–3875, Jul. 2012.

[31] X. Fu, F.-M. Han, and H. Zou, “Robust 1-bit compressive sensing against
sign flips,” in Proc. Glob. Commun. Conf., Austin, TX, USA, Dec. 2014,
pp. 3121–3125.

[32] S. Gopi, P. Netrapalli, P. Jain, and A. Nori, “One-bit compressed sensing:
Provable support and vector recovery,” in Proc. Int. Conf. Mach. Learn.,
Atlanta, Georgia, USA, Jun. 2013, pp. 154–162.

[33] Q. Fan, C. Jia, J. Liu, and Y. Luo, “Robust recovery in 1-bit compressive
sensing via ℓp-constrained least squares,” Signal Process., vol. 179, p.
107822, Feb. 2021.

[34] X. Huang and M. Yan, “Nonconvex penalties with analytical solutions
for one-bit compressive sensing,” Signal Process., vol. 144, pp. 341–351,
Oct. 2018.

[35] D.-Q. Dai, L. Shen, Y. Xu, and N. Zhang, “Noisy 1-bit compressive
sensing: Models and algorithms,” Appl. Comput. Harmon. Anal., vol. 40,
no. 1, pp. 1–32, Jan. 2016.

[36] M. P. Friedlander, H. Jeong, Y. Plan, and Ö. Yılmaz, “NBIHT: An
efficient algorithm for 1-bit compressed sensing with optimal error decay
rate,” IEEE Trans. Inf. Theory, vol. 68, no. 2, pp. 1157–1177, Nov. 2021.

[37] A. Eamaz, F. Yeganegi, and M. Soltanalian, “One-bit phase retrieval:
More samples means less complexity?” IEEE Trans. Signal Process.,
vol. 70, pp. 4618–4632, Sep. 2022.

[38] A. Eamaz, F. Yeganegi, D. Needell, and M. Soltanalian, “Harnessing the
power of sample abundance: Theoretical guarantees and algorithms for
accelerated one-bit sensing,” arXiv:2308.00695, 2023.

[39] S. Khobahi and M. Soltanalian, “Model-based deep learning for one-bit
compressive sensing,” IEEE Trans. Signal Process., vol. 68, pp. 5292–
5307, Sep. 2020.

[40] S. Khobahi, N. Naimipour, M. Soltanalian, and Y. C. Eldar, “Deep signal
recovery with one-bit quantization,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., Brighton, UK, May 2019, pp. 2987–2991.

[41] Y. Zeng, S. Khobahi, and M. Soltanalian, “One-bit compressive sensing:
Can we go deep and blind?” IEEE Signal Process Lett., vol. 29, pp.
1629–1633, Jun. 2022.

[42] S. Khobahi, N. Shlezinger, M. Soltanalian, and Y. C. Eldar, “LoRD-Net:
Unfolded deep detection network with low-resolution receivers,” IEEE
Trans. Signal Process., vol. 69, pp. 5651–5664, Oct. 2021.

[43] J. Huang, Y. Jiao, X. Lu, and L. Zhu, “Robust decoding from 1-
bit compressive sampling with ordinary and regularized least squares,”
SIAM J. Sci. Comput., vol. 40, no. 4, pp. A2062–A2086, Jan. 2018.

[44] P. Xiao and B. Liao, “Robust one-bit compressive sensing with weighted
ℓ1-norm minimization,” Signal Processing, vol. 164, pp. 380–385, Jun.
2019.

[45] X. Huang, H. Yang, Y. Huang, L. Shi, F. He, A. Maier, and M. Yan,
“Robust mixed one-bit compressive sensing,” Signal Process., vol. 162,
pp. 161–168, Sep. 2019.

[46] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternating
minimization and projection methods for nonconvex problems: An
approach based on the Kurdyka-Łojasiewicz inequality,” Math. Oper.
Res., vol. 35, no. 2, pp. 438–457, Apr. 2010.

[47] F. Wen, R. Ying, P. Liu, and T.-K. Truong, “Nonconvex regularized
robust PCA using the proximal block coordinate descent algorithm,”
IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5402–5416, Oct. 2019.

[48] T. Blumensath and M. E. Davies, “Iterative thresholding for sparse
approximations,” J. Fourier Anal. Appl., vol. 14, pp. 629–654, Sep. 2008.

[49] J. N. Laska, M. A. Davenport, and R. G. Baraniuk, “Exact signal
recovery from sparsely corrupted measurements through the pursuit of
justice,” in Proc. Conf. Rec. 43rd Asilomar Conf. Signals Syst. Comput.,
Pacific Grove, CA, USA, Nov. 2009, pp. 1556–1560.

[50] Y. Chen, C. Caramanis, and S. Mannor, “Robust sparse regression under
adversarial corruption,” in Proc. Int. Conf. Mach. Learn., Princeton, NJ,
USA, Jun. 2013, pp. 774–782.

[51] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” J.
Roy.Stat. Soc., Ser. B, Methodol., vol. 58, no. 1, pp. 267–288, Mar. 1996.

[52] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood
and its oracle properties,” J. Amer. Statist. Assoc., vol. 96, no. 456, pp.
1348–1360, Dec. 2001.

[53] C.-H. Zhang, “Nearly unbiased variable selection under minimax con-
cave penalty,” 2010.

[54] A. Beck, “On the convergence of alternating minimization for convex
programming with applications to iteratively reweighted least squares
and decomposition schemes,” SIAM J. Optim., vol. 25, no. 1, pp. 185–
209, Jan. 2015.

[55] X. P. Li, Z.-L. Shi, Q. Liu, and H. C. So, “Fast robust matrix completion
via entry-wise ℓ0-norm minimization,” IEEE Trans. Cybern., vol. 53,
no. 11, pp. 7199–7212, Nov. 2023.

[56] Q. Liu and X. Li, “Efficient low-rank matrix factorization based on ℓ1,ε-
norm for online background subtraction,” IEEE Trans. Circuits Syst.
Video Technol., vol. 32, no. 7, pp. 4900–4904, Jul. 2021.

[57] E. Lybrand, A. Ma, and R. Saab, “On the number of faces and radii
of cells induced by gaussian spherical tessellations,” Appl. Comput.
Harmon. A., vol. 56, pp. 176–188, Jan. 2022.

[58] O. Bar-Shalom and A. J. Weiss, “DOA estimation using one-bit quan-
tized measurements,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3,
pp. 868–884, Jun. 2002.

[59] C.-L. Liu and P. Vaidyanathan, “One-bit sparse array DOA estimation,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., New Orleans,
LA, USA, May 2017, pp. 3126–3130.

[60] S. Sedighi, B. Shankar, M. Soltanalian, and B. Ottersten, “One-bit DoA
estimation via sparse linear arrays,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., Barcelona, Spain, Apr. 2020, pp. 9135–9139.

[61] S. Sedighi, M. Soltanalian, and B. Ottersten, “On the performance of
one-bit DOA estimation via sparse linear arrays,” IEEE Trans. Signal
Process., vol. 69, pp. 6165–6182, Oct. 2021.

[62] A. Eamaz, F. Yeganegi, and M. Soltanalian, “Covariance recovery for
one-bit sampled stationary signals with time-varying sampling thresh-
olds,” Signal Process., vol. 206, p. 108899, May 2023.

[63] ——, “Covariance recovery for one-bit sampled non-stationary signals
with time-varying sampling thresholds,” IEEE Trans. Signal Process.,
vol. 70, pp. 5222–5236, Oct. 2022.

[64] ——, “Modified arcsine law for one-bit sampled stationary signals with
time-varying thresholds,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., Toronto, ON, Canada, Jun. 2021, pp. 5459–5463.

[65] T. Yang, J. Maly, S. Dirksen, and G. Caire, “Plug-in channel estimation
with dithered quantized signals in spatially non-stationary massive
MIMO systems,” arXiv:2301.04641, 2023.

[66] S. Dirksen, J. Maly, and H. Rauhut, “Covariance estimation under one-
bit quantization,” Ann. Statist., vol. 50, no. 6, pp. 3538–3562, Dec. 2022.

[67] A. Eamaz, F. Yeganegi, Y. Hu, S. Sun, and M. Soltanalian, “Automotive
radar sensing with sparse linear arrays using one-bit Hankel matrix
completion,” arXiv:2312.05423, 2023.

[68] X. Huang and B. Liao, “One-bit MUSIC,” IEEE Signal Process Lett.,
vol. 26, no. 7, pp. 961–965, Jul. 2019.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2024.3387346

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 16,2024 at 12:35:56 UTC from IEEE Xplore.  Restrictions apply. 



10th-April-2024 13

[69] Z. Esmaeilbeig, A. Eamaz, K. V. Mishra, and M. Soltanalian, “Quantized
phase-shift design of active IRS for integrated sensing and commu-
nications,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
Workshops (ICASSPW), Rhodes Island, Greece, Aug. 2023, pp. 1–5.

[70] P. Wang, H. Yang, and Z. Ye, “1-bit direction of arrival estimation via
improved complex-valued binary iterative hard thresholding,” Digital
Signal Process., vol. 120, p. 103265, Oct. 2022.

[71] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar. 1986.

[72] Z. Wei, W. Wang, F. Dong, and Q. Liu, “Gridless one-bit direction-
of-arrival estimation via atomic norm denoising,” IEEE Commun. Lett.,
vol. 24, no. 10, pp. 2177–2181, Jun. 2020.

[73] L. Feng, L. Huang, Q. Li, Z.-Q. He, and M. Chen, “An off-grid iterative
reweighted approach to one-bit direction of arrival estimation,” IEEE
Trans. Veh. Technol., vol. 72, no. 6, pp. 8134–8139, Jun. 2023.

[74] A. Eamaz, F. Yeganegi, and M. Soltanalian, “OPeRA: Leveraging the
sample size and complexity trade-off towards efficient one-bit phase
retrieval,” in Proc. 56th Asilomar Conf. Signals, Syst., Comput., Pacific
Grove, CA, USA, Oct. 2022, pp. 81–85.

[75] A. Eamaz, F. Yeganegi, D. Needell, and M. Soltanalian, “One-bit
quadratic compressed sensing: From sample abundance to linear fea-
sibility,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Taipei, Taiwan,
Aug. 2023, pp. 1154–1159.

[76] A. Eamaz, F. Yeganegi, and M. Soltanalian, “HDR imaging with one-bit
quantization,” arXiv:2309.03982, 2023.

[77] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent
methods for semi-algebraic and tame problems: Proximal algorithms,
forward–backward splitting, and regularized Gauss–Seidel methods,”
Math. Program., vol. 137, no. 1-2, pp. 91–129, Aug. 2013.

[78] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Math. Program-
ming, vol. 146, no. 1-2, pp. 459–494, Jul. 2014.

Xiao-Peng Li (M’23) received the B.Eng. degree as
an outstanding graduate in Electronic Science and
Technology from Yanshan University, Qinhuangdao,
China, in 2015, and the M.Sc. degree with Dis-
tinction in Electronic Information Engineering and
the Ph.D. degree in Electrical Engineering from the
City University of Hong Kong, Hong Kong SAR,
China, in 2018 and 2022, respectively. He was a
Research Assistant with the Department of Informa-
tion Engineering, Shenzhen University, Shenzhen,
China from 2018 to 2019, and a Postdoctoral Fellow

with the Department of Electrical Engineering, City University of Hong
Kong from 2022 to 2023. He is currently an Assistant Professor with the
College of Electronics and Information Engineering, Shenzhen University.
His research interests include robust signal processing, sparse recovery, matrix
processing, tensor processing, optimization methods, machine learning, and
their applications in various areas of engineering, including target estimation,
image recovery, video restoration, hyperspectral unmixing, and stock market
analysis.

Zhang-Lei Shi received the Ph.D. degree from the
Department of Electrical Engineering, City Univer-
sity of Hong Kong, Hong Kong SAR, China, in
2021. He is currently a Lecturer with the College
of Science, China University of Petroleum (East
China), Qingdao, China. His current research inter-
ests include neural networks, machine learning, and
sparse optimization.

Lei Huang (M’07-SM’14) received the B. Sc.
and Ph. D. degrees in electronic engineering from
Xidian University, Xi’an, China, in 2000 and 2005,
respectively. He is currently with the College of
Electronics and Information Engineering, Shenzhen
University, as a Chair Professor, and established
the Shenzhen Key Laboratory of Advanced Navi-
gation Technology (ANT) as the Founding Director.
He is now the Executive Dean of the College of
Electronics and Information Engineering and the
Executive Director of the State Key Laboratory

of Radio Frequency Heterogeneous Integration, Shenzhen University. Dr.
Huang’s research interests include spectral estimation, array signal processing,
statistical signal processing, and their applications in radar, navigation and
wireless communications. In these areas, he has published 130 IEEE journal
papers, and undertaken 20 national and provincial key projects, such as the
Key Project of the National Natural Science Foundation of China (NSFC)
and Joint Project of NSFC-RGC (Hong Kong). He was the winner of the
Distinguished Young Scientists of NSFC. Dr. Huang severed as a Senior
Area Editor of IEEE Transactions on Signal Processing (2019-2023), and an
Associate Editor of IEEE Transactions on Signal Processing (2015-2019). He
also was on the editorial boards of Elsevier-Digital Signal Processing (2012-
2019) and has been on the editorial boards of IET Signal Processing (2017-
present), and an elected member of Sensor Array and Multichannel (SAM)
Technical Committee of the IEEE Signal Processing Society (2016-2022).

Anthony Man-Cho So (Fellow, IEEE) received the
B.S.E. degree in computer science from Princeton
University, Princeton, NJ, USA, with minors in
applied and computational mathematics, engineering
and management systems, and German language and
culture; the M.Sc. degree in computer science and
the Ph.D. degree in computer science with a Ph.D.
minor in mathematics from Stanford University,
Stanford, CA, USA. He is currently Dean of the
Graduate School, Deputy Master of Morningside
College, and a Professor with the Department of

Systems Engineering and Engineering Management at The Chinese University
of Hong Kong (CUHK), Hong Kong SAR, China. His research interests
include optimization theory and its applications in various areas of science
and engineering, including computational geometry, machine learning, signal
processing, and statistics.

Dr. So has been a Fellow of IEEE since 2023 and an Outstanding Fellow
of the Faculty of Engineering at CUHK since 2019. He is the recipient of a
number of research and teaching awards, including the SIAM Review SIGEST
Award in 2024, the 2022 University Grants Committee (UGC) Teaching
Award, the 2018 IEEE Signal Processing Society Best Paper Award, the
2015 IEEE Signal Processing Society Signal Processing Magazine Best Paper
Award, the 2014 IEEE Communications Society Asia-Pacific Outstanding
Paper Award, the 2013 CUHK Vice-Chancellor’s Exemplary Teaching Award,
and the 2010 INFORMS Optimization Society Optimization Prize for Young
Researchers. He currently serves on the Editorial Boards of Journal of
Global Optimization, Mathematics of Operations Research, Mathematical
Programming, Open Journal of Mathematical Optimization, Optimization
Methods and Software, and SIAM Journal on Optimization. He was also
the Lead Guest Editor of the Special Issue on Non-Convex Optimization for
Signal Processing and Machine Learning of the IEEE Signal Processing
Magazine.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2024.3387346

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 16,2024 at 12:35:56 UTC from IEEE Xplore.  Restrictions apply. 



10th-April-2024 14

Hing Cheung So (S’90–M’95–SM’07-F’15) was
born in Hong Kong. He received the B.Eng. de-
gree from the City University of Hong Kong and
the Ph.D. degree from The Chinese University of
Hong Kong, both in electronic engineering, in 1990
and 1995, respectively. From 1990 to 1991, he
was an Electronic Engineer with the Research and
Development Division, Everex Systems Engineering
Ltd., Hong Kong. During 1995–1996, he was a
Postdoctoral Fellow with The Chinese University of
Hong Kong. From 1996 to 1999, he was a Research

Assistant Professor with the Department of Electronic Engineering, City
University of Hong Kong, where he is currently a Professor. His research
interests include detection and estimation, fast and adaptive algorithms, mul-
tidimensional harmonic retrieval, robust signal processing, source localization,
and sparse approximation.

He has been on the editorial boards of IEEE Signal Processing Magazine
(2014–2017), IEEE Transactions on Signal Processing (2010–2014), Signal
Processing (2010–), and Digital Signal Processing (2011–). He was also Lead
Guest Editor for IEEE Journal of Selected Topics in Signal Processing, special
issue on “Advances in Time/Frequency Modulated Array Signal Processing” in
2017. In addition, he was an elected member in Signal Processing Theory and
Methods Technical Committee (2011–2016) of the IEEE Signal Processing
Society where he was chair in the awards subcommittee (2015–2016).

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2024.3387346

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 16,2024 at 12:35:56 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Prior Art
	Motivations and Contributions
	Organization and Notation

	Algorithm Development
	Proposed Model
	Proposed Algorithm
	Convergence Analysis
	Estimation Error Bound
	Computational Complexity
	Selection of 

	Experiment Results
	Synthetic Data
	Direction-of-Arrival Estimation

	Conclusion
	Appendix A: Derivation of Solution to (19)
	Appendix B: Proof of Theorem 2
	Property (i)
	Property (ii)
	Property (iii)

	Appendix C: Proof of Theorem 3
	Property (i)
	Property (ii)
	Property (iii)

	Appendix D: Proof of Lemma 1
	References
	Biographies
	Xiao-Peng Li
	Zhang-Lei Shi
	 Lei Huang
	Anthony Man-Cho So
	Hing Cheung So




