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Abstract— Tensor completion (TC) refers to restoring the
missing entries in a given tensor by making use of the low-rank
structure. Most existing algorithms have excellent performance in
Gaussian noise or impulsive noise scenarios. Generally speaking,
the Frobenius-norm-based methods achieve excellent perfor-
mance in additive Gaussian noise, while their recovery severely
degrades in impulsive noise. Although the algorithms using the
£,-norm (0 < p < 2) or its variants can attain high restoration
accuracy in the presence of gross errors, they are inferior to
the Frobenius-norm-based methods when the noise is Gaussian-
distributed. Therefore, an approach that is able to perform well
in both Gaussian noise and impulsive noise is desired. In this
work, we use a capped Frobenius norm to restrain outliers, which
corresponds to a form of the truncated least-squares loss function.
The upper bound of our capped Frobenius norm is automatically
updated using normalized median absolute deviation during
iterations. Therefore, it achieves better performance than the
£,-norm with outlier-contaminated observations and attains com-
parable accuracy to the Frobenius norm without tuning parame-
ter in Gaussian noise. We then adopt the half-quadratic theory
to convert the nonconvex problem into a tractable multivariable
problem, that is, convex optimization with respect to (w.r.t.) each
individual variable. To address the resultant task, we exploit
the proximal block coordinate descent (PBCD) method and then
establish the convergence of the suggested algorithm. Specifically,
the objective function value is guaranteed to be convergent while
the variable sequence has a subsequence converging to a critical
point. Experimental results based on real-world images and
videos exhibit the superiority of the devised approach over several
state-of-the-art algorithms in terms of recovery performance.
MATLAB code is available at https://github.com/Li-X-P/Code-
of-Robust-Tensor-Completion.

Index Terms— Capped Frobenius norm, proximal block coor-
dinate descent, robust recovery, tensor completion (TC), tensor
ring.
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I. INTRODUCTION

ENSOR (a.k.a. multiway array) is the multidimensional

extension of scalar, vector, and matrix [1] and can repre-
sent many real-world signals, including color images, videos,
hyperspectral images, and radar data to name a few. Although
tensors can be unfolded into matrices and then be processed
by matrix techniques [2], [3], this procedure may discard the
inherent information in the high order. Therefore, multilinear
algebra for tensors is a powerful tool to analyze high-order
data.

The success of low-rank matrix recovery [4], [5] has
inspired a large number of researchers to expand the concept
to tensor completion (TC) for processing high-order data.
TC aims at recovering the missing entries of a partially
observed tensor using low-rank structure and has a wide
range of applications, such as image inpainting [6], video
restoration [7], multiple-input multiple-output (MIMO) radar
localization [8], object detection [9], background—foreground
separation [10], [11], and hyperspectral image recovery [12].
This is because the dominant information of high-dimensional
data is contained in its low-dimensional subspace.

Analogous to matrix completion, TC is intuitively formu-
lated as a rank minimization problem with the constraint that
the recovered and given tensors are identical in the observation
set. Since it is difficult to handle the rank minimization prob-
lem, most existing algorithms adopt the low-rank factorization
strategy to achieve TC. Note that various tensor decompo-
sition models generate different TC methods. For instance,
CANDECOMP/PARAFAC (CP) decomposition factorizes a
tensor into a sum of outer products of vectors [13], [14],
which has been applied to tensor restoration [15], [16], [17].
The Tucker decomposition uses one small core tensor and a
set of matrices [18], and the corresponding TC algorithms
include [19], [20]. Besides, tensor singular value decompo-
sition (t-SVD) [21] has been adopted for tensor recovery [22],
[23], [24]. In addition, tensor train factorization decomposes
an Nth-order tensor into two matrices and (N — 2) third-
order tensors [25]. It has also been exploited for TC, and it
demonstrates better recovery performance than the CP decom-
position, Tucker decomposition, and t-SVD [7], [26], [27].
As an improvement of the tensor train factorization, tensor ring
decomposition factorizes an Nth-order tensor into N third-
order tensors [28] and has been applied to tensor recovery [29],
[30], [31]. On the other hand, a fully connected tensor network
decomposition has been developed to restore higher order
tensors [32]. Compared with tensor train and tensor ring

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 30,2023 at 07:28:57 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-5448-7219
https://orcid.org/0000-0002-4693-9430
https://orcid.org/0000-0002-6637-4975
https://orcid.org/0000-0001-8396-7898
https://orcid.org/0000-0002-3385-7911

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

factorizations, it decomposes an Nth-order tensor into N
Nth-order tensors, which results in a more adequate and
flexible representation.

Despite the fact that Gaussian distribution is the most typical
noise model, non-Gaussian-distributed noise also appears in
real life [33], for example, salt-and-pepper noise in visual
data [34] and impulsive noise in communication channels [35].
The aforementioned methods adopt the Frobenius norm as
their loss function and thus they are not robust to gross errors.
Therefore, their performance might be degraded when the
observed tensor is corrupted by the outliers. To restrain anom-
alies, the £,-norm with p € (0, 2) has been applied to min-
imize the recovered error, resulting in iteratively reweighted
t-SVD (IR-t-SVD) [36], £ ,-regression tensor train completion
(¢£,-TTC) [37], and trilinear alternating least absolute error
regression (TALAE) [38]. Nevertheless, the ¢,-norm-based
methods have relatively high computational complexity since
solving the ¢,-norm-based problem requires a multilayer iter-
ative procedure. Besides, the £ ,-norm with p € (0, 1) poses a
challenge because it is a nonconvex and nonsmooth function.
To tackle this issue, Chen et al. [39] propose a logarithmic
norm to approximate the £,-norm with p € (0, 1) and apply
it for tensor recovery in the presence of gross errors, yielding
an algorithm called logarithmic norm minimization and outlier
projection (LNOP). Li and So [40] suggest approximating
the £,-norm with the ¢, -norm, which demonstrates better
performance than the ¢ ,-norm in robust TC (RTC). Moreover,
the robust principal component analysis (RPCA) concept [41]
has been used for RTC, resulting in the collaborative sparse
and low-rank transforms model (CSLRT) [42] and robust
tensor ring completion (RTRC) [43].

Although the ¢,-norm and its variants exhibit superior
performance over the Frobenius norm in the presence of the
outliers, the former is inferior to the latter in the Gaussian
noise scenarios. Moreover, the £,-norm applies to whole ten-
sor, implying that all the elements are considered as anomaly-
contaminated. However, only a small proportions are typically
corrupted by anomalies, and thus its performance is not
optimal in impulsive noise. Conceptually, the RPCA model
attains excellent performance in both the white Gaussian noise
and gross error scenarios. Nevertheless, in practice, its solution
depends on the choice of the regularization parameter. That is,
for different data and noise, practitioners need to carefully
adjust the penalty parameter to achieve good performance,
which is time-consuming.

In this work, our aim is to devise an RTC method to
suppress the white Gaussian noise and/or impulsive noise
without the need to tune any parameter. We address RTC using
the idea of the capped Frobenius norm, corresponding to a
form of the truncated least-squares loss function [44], [45].
The interpretation of the upper bound of this norm is
the boundary between the normal and outlier-contaminated
entries. Therefore, we exploit the normalized median absolute
deviation strategy to update the bound, such that the capped
Frobenius norm is capable of effectively resisting the white
Gaussian noise and/or impulsive noise. We then combine
the capped Frobenius norm with tensor ring decomposition
to tackle RTC. Although the capped Frobenius norm is
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nonconvex, we use the half-quadratic theory [46], [47] to con-
vert the resultant problem into a tractable form, that is, convex
optimization with respect to (w.r.t.) each individual variable.
Subsequently, we adopt the proximal block coordinate descent
(PBCD) method [48] to handle the multivariable optimization
in which one block is updated while the remaining blocks
are fixed at each iteration. Moreover, we establish the conver-
gence of the proposed algorithm. Specifically, the suggested
method ensures the objective function value to converge and
the variable sequence to have a subsequence converging to
a critical point. Our main contributions are summarized as
follows.

1) We adopt the normalized median absolute deviation to
obtain a robust standard deviation of the fitting error.
Then, given a confidence interval, the upper bound is
adaptively determined. Therefore, the capped Frobenius
norm achieves excellent performance in the presence of
Gaussian noise and/or impulsive noise.

2) We simplify the capped Frobenius norm based formula-
tion into a Frobenius norm optimization with a regular-
ization term. Then, PBCD is adopted as the solver, and
all the subproblems have closed-form solutions.

3) We analyze the convergence behavior of the proposed
algorithm. We prove that the objective function value is
guaranteed to be convergent while the variable sequence
contains a subsequence converging to a critical point.

4) Experimental results using real-world images and videos
demonstrate that the devised approach is superior to
popular robust methods in the presence of impulsive
noise. In addition, without tuning any parameter, the
performance of our method approaches that of the
Frobenius-norm-based approach in the white Gaussian
noise scenarios.

The remainder of this article is organized as follows.
In Section II, we introduce notations and preliminaries. The
proposed algorithm is presented in Section III. Besides,
we analyze its convergence behavior and computational com-
plexity. In Section IV, numerical examples are included to
evaluate the devised method by comparing with several state-
of-the-art algorithms. Finally, concluding remarks are given
in Section V.

II. BACKGROUND

In this section, notations and basic definitions are provided,
and relevant works are reviewed.

A. Notations

Scalars, vectors, matrices, and tensors are denoted by italic,
bold lower case, bold upper case, and bold calligraphic letters,
respectively. For example, X € RI*2xxIv gignifies an
Nth-order tensor, and its (/1,[»,...,[ly) entry is denoted by
Xidy.y OF X1, b, ..., Iy). The mode-n unfolding of X
is represented by X,; € RI*Ui=hilii=Iv)  Given a ten-
sor X € RI"Ex5 it Frobenius norm and ¢,-norm with
p e (0,2) are [X[r = (XL, X2, 308 %2 )2 and
X1, = L, Zj?:l S x/; )"/, respectively. Consider
a matrix X € R'"2 X7 is the transpose of X, and tr(X) =
Sominlieh) i is the trace of X. The vectorization operator
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TABLE I
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LIST OF NOTATIONS

Symbol Description

T scalar

z eR! vector

X € RIrxI2 11 x I> matrix

X € RI1xTax o xIy Nth-order tensor

Tiy g,y OF X(l1, 12, IN) element of X’

X(: 7, jth lateral slice of X
X(i,:, k) vertical fiber of X
X € RIn XU Tng Inga-IN) mode-n unfolding of X
llz[l2 = Zf:l $2 £2-norm

1% F = \/ZII Zk L x2 Tik Frobenius norm
1%, = (E Zk 1 :r:f] W)LP £p-norm with p € (0, 2)

capped Frobenius norm

IXllor =\/z~p1

‘Flzk:lmm(xi,j,kon)

tr(X) = Z;:?(II’IZ) T trace of X

xT transpose of X

xXTn tensor permutation of X’
T jth column of X

T ith row of X

vec(X) = [z?:l;z?:Q; R 12]T vectorization operator
mat(vec(X)) =X matrization operator
® Hadamard product

o outer product

is defined as vec(X) = [x! 1,x 2 ;x.le] where x. ; for
J €[1, I,] stands for the ]th column of X, while mat(-) is the
matrization operator, such that mat(vec(X)) = X. Moreover,
©® and o signify the Hadamard product and outer product oper-
ators, respectively. Other mathematical symbols are defined in

their first appearance. The notations are summarized in Table 1.

B. Basic Operations

Similar to the matrix product, the tensor product of X €

ROXExL and Y € REXEXE ig defined as XY = Z €
RI*(1)xI5 149], and it is computed as follows:
Z(:,lz Xl4, :) :X(:512,:)y(:’l4’ :) (1)

where I, € [1, L], I4 € [1, L4], and X (:,1,:) stands for the
[th lateral slice of X.

In addition, the tensor permutation operation of X €
RAxEx-xIv g represented by X7 [49]. The relationship
between X7 and X is

X0 (l,, ... Lio) =X, b, .. ly).  (2)

Since the proposed algorithm is based on tensor ring
decomposition, we briefly introduce it for completeness.
Tensor ring decomposition factorizes an Nth-order tensor
X e RivxbxxIv into N third-order tensors [28]

7lN7ll9"'9

Ry,...,
z Vi(r1, 5, r2)oa(r2, 5, r3) 0 -0 Yn(rn, 1 r1)
Ty rn=1
(3)
where I, € REIxRet "R —[R, ..., Ry] is the multilinear

tensor ring rank, and Y, (r,,:, r,+1) is the vertical fiber.
Besides, the entrywise formulation is

20 =t (DGl DGl ) - PGl ). @)

In this work, (3) is represented by X =
conciseness.

Wy - V) for

C. Related Work

Consider a partially observed tensor Mg € RV where
Q € RIv*Iv i a binary tensor, consisting of 0 and 1.
..... = 1 signifies that the corresponding my,__;, is
observed, whlle €,...1y = 0 indicates a missing entry, namely,
my, ..., = 0. Therefore, Mg has the form of

Mag=MoQ. )

As in matrix completion, TC can be formulated as a rank
minimization problem

m)in rank(X), st. X OQ=Mg (6)
where X € R!>*Iv_Since the rank function is nonconvex
and discrete, Zhang et al. [50] propose using tensor nuclear

norm instead of the rank function to solve (6), leading to

st. X OQ=Mqg @)

min || X |ITnN,
x

where ||-||tan denotes the tensor nuclear norm, defined in [50].
Since the tensor nuclear norm is defined based on the third-
order tensors, its application is limited. To handle higher
order tensors, Wang et al. [29] suggest exploiting tensor
ring decomposition to formulate the tensor recovery problem,
resulting in

min [Mg —h(Y;---Vy) © Q|3

nn=l1,.,N

®)

However, the above-mentioned methods are not robust to
the outliers since they adopt the Frobenius norm for error
minimization. Consider a linear regression problem based on
the Frobenius norm

L L

mm IAX — Y||F = mmz Z(a,, o

i=1 j=I1

RN )
If y;; with i € [1,I;] and j € [1, 5] is corrupted by an
outlier, the ratio between the corresponding residual |a; .x. ; —
vi,j| and that of a normal entry is severely enlarged by the
Frobenius norm. Then, to minimize the whole fitting error,
x.; will tend to reduce (a; .x. ; —y; ;). For instance, consider
A =[1,2;3,4], X = [—0.05,—0.3;0.075,0.275], and Y =
[0.1,0.25; 0.15,0.2]. If Y is mixed with the white Gaussian
noise, leading to ¥ = [0.0941, 0.2685; 0.1360, 0.2182], then
X = A'Y = [-0.0521, —0.3189; 0.0731, 0.2937]. How-
ever, if y;; is corrupted by an anomaly, such that ¥ =
[3,0.25;0.15,0.2], then X = [-—5.85,—0.3;4.425,0.275].
That is, the Frobenius-norm-based solution deviates much
from the ground truth.

One of the prevailing methods to resist anomalies is to adopt
the £,-norm with p € (0, 2) as the loss function [39], leading
to

min [ XllL, st ¥ O0Q—Mal, =9 (10)

where J > 0 is a tolerance parameter to control the fitting
error, and ||-||. is defined as the logarithmic norm; see [39].
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Another strategy is to exploit RPCA, and the correspond-
ing algorithms include tensor nuclear norm with total vari-
ation regularization (TNTV) [51] and transformed t-SVD
(TTSVD) [52]. Specifically, TTSVD considers the following
optimization problem:

min_ ||£|lrran + ¢ IS
X.L.S

st L+S=X, XO0Q =M, (11)

where ¢ > 0 is the penalty parameter, and ||- || rrnn 1S the trans-
formed tubal nuclear norm, as defined in [52]. Ideally, (11) is
able to attain good performance in both the Gaussian noise
and impulsive noise via tweaking x. However, it is time-
consuming to tune u to attain satisfactory performance for
different data and noise environments.

III. PROPOSED ALGORITHM

In this section, we first present the suggested method.
Then, we analyze its convergence behavior and computational
complexity.

A. Algorithm Development

To restrain gross errors, we suggest solving tensor recovery
using the capped Frobenius norm, defined as follows:

Ii,....Iy

1Xlcr= | D min(x?_, .0? (12)

where & > 0 is an upper bound to suppress anomalies.
Note that the upper limit § can be considered as the thresh-
old for differentiating the normal and anomaly-contaminated
elements. In this study, we adopt the normalized median
absolute deviation for its adaptive determination, which is
shortly introduced in (28).

Before proceeding, we highlight the advantages of the
capped Frobenius norm over the Frobenius norm and
¢ ,-norm with p € (0, 2). Compared with the Frobenius norm,
in impulsive noise, the capped Frobenius norm is able to
restrain the outliers. When there are no outliers, it reverts to
the Frobenius norm. In comparison to the £,-norm, the capped
Frobenius norm resists gross errors, but it does not affect
the normal entries. As a result, the capped Frobenius norm
has a better performance than the £,-norm in the presence of
impulsive noise, as well as achieves comparable performance
to the Frobenius norm in the Gaussian noise scenarios.

We then combine the capped Frobenius norm with tensor
ring decomposition to formulate the RTC problem as follows:

min  [Mao—hQ;---Vy) OQ|%,

nn=l1,.,N

13)

where Y, € RR*L<R with R being the predefined multilinear
tensor ring rank. Since the capped Frobenius norm is non-
convex, (13) w.rt. each variable is nonconvex. We exploit
the half-quadratic theory to convert (13) into a tractable
problem, such that it is a convex optimization w.r.t. each
individual variable. The relevant background is introduced in
the following lemma.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Lemma 1: [46]: Given ¢(y) and w(x), if ¢(y) makes
f(») = y* — ¢(y) convex, and w(x) generates a convex
function g(x) = x2 + w(x), then we have

¢(y) =inf ((y —x)’ +y), ye(-00,+00)  (l4a)

w(x) =sup (—(y —x)* +¢()), x € (—o0,+00). (14b)
y

Based on Lemma 1, we derive an equivalent convex function
of ¢g(y) = min (2, 6?), as described in Theorem 1.

Theorem 1: Let ¢yp(y) = min (y2,0?), then minimizing
¢ (y) is equivalent to

min (y — x)2 + wy(x) (15)

where wy(x) is

—(0 —1x)*+6% x| <0

16
0? x| > 0. (16)

wo(x) = [
The proof is provided in Appendix A. Note that all the
appendices are presented in supplementary material.
Moreover, we introduce a set @ involving the coordinates
of the observed entries in Mg, defined as follows:

O ={(,..., NI, 1y =1} (17)
Based on @, (13) is reexpressed as follows:
min > gplmy, iy —h V1 V)i, (18)
yn:n:],...,N
(11 ..... IN)ECD

In accordance to Theorem 1, (18) is equivalent to

. ((mll ..... w —hQr-- YN,y
n:n=1,...,N,

Defining w4(Sa) = >,
reformulated as follows:

IMa—hQ)---Yn) ©Q—8al;+ws(Sa). (20)

min

It is clear that (20) is a multivariable nonconvex optimization
problem, but w.rt. each individual variable, it is convex.
To tackle (20), PBCD is adopted as the solver, resulting in
the following iterative procedure:

41 = argmin [ Ma — h(P\Y% - V4) 0@ — Sal;
+y0(Sa) (21a)
P = argmin [ Ma — h(1Y% -+ V) 0 @ - S5}
+1 [y =i @1b)
£ = argmin | Mo — b7 Vi) oS5
SRA RN @le)
Vi = argmin [Ma—h (V"' ¥ Yy) 0Q- S |7

+2[| Y = 4|5 21d)
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where 41 > 0 is the proximal parameter. It is seen that the
PBCD alternately updates one of the variables with fixing the
N remaining variables at each iteration.

We first tackle (21a). It is easy to know that its solution is
only determined by the entries with (/1,...,[y) € ®. We thus
reformulate (21a) as a vector optimization problem

k+1

s"1 = argmin I — |3 + yo (s) (22)

where r¥ € RI®l consists of the observed entries of 'R,"‘) =
Mg — h(y’;yg .- -y’;v) ® Q. The procedure for obtaining r
rom 1S 1llustrated with the use of a third-order tensor as
from R, is ill d with th f a third-ord

follows. Given Q € R¥*3*2, such that

010 101
Q1= [1 0 1] and £2...2 = [o 1 0]

Then, r* = [’"5,1,1”’{(,2,1""5,3,1""{(,1,2”"5,2,2”’{(,3,2] with ri]fj,k
being the (i, j, k) entry of RY.

We then derive the closed-form solution to (22), describing
in the following lemma.

Lemma 2: For the following optimization problem:

(23a)

s = argming(s) = argmin (r — 5)> 4+ yy(s).  (24)

Its optimal solution is Ty (r), defined as follows:

0 0
I (25)
r, |r|>=8.
Besides, the subgradient of ¢(s) at minimizer s**! is
Oe[—-(r+6),0—r], |rl <0
dp (s = 26
o) [o, r=0. 0

The proof is provided in Appendix B.
In (22), si"+1 only depends on rl.k, and hence its optimal
solution is

s = T rb). 27)

Note that s¥! is affected by the parameter 6%. We suggest
updating A% prior to computing s¥*! for better performance.
Since r* is defined as the fitting error at the kth iteration,
if the mean of the fitting error is assumed 0, —0 < r < @
is considered as a confidence interval to identify anom-
alies. To guarantee the convergence, it requires 0* to be
nonincreasing

0F = min(@, %" (28)

where & is determined by a robust measure for standard
deviation, namely, the normalized median absolute deviation
method [33]

0 = ¢ x 1.4826 x Med(|r* — Med(r"))). (29)

Here, ¢ > 0 controls the confidence interval range, and
Med(+) is the sample median operator. In Section 1V, we will
investigate the impact of ¢ on the recovery performance in the
Gaussian noise and impulsive noise scenarios.

After obtaining s¥*!, S¥*! is updated via the inverse oper-
ation of constructing r* from R,

We then handle (21b)-(21d). Since they have the same
structure, we detail the derivation procedure for one of them,
say Y1 without loss of generality. To simplify expressions,
the optimization problem for updating Y**! is reexpressed as
follows:

yi! =argmin |Ga—h(P*! - Yy, YE, - Vh) o]
+2| . =Vl GO

where Go = Mgq — S&™'. Using tensor permutation opera-
tion, (30) is equivalent to
k+1 . T, 7,12 X2
Y, =argmin |Gg —h(V.Y) 0 Q" [} + 2|V - W, [
(3D

where Y = Y& - YK ... P with the dimensions
of R X (Iyq1---InyLy -+ I,_1) X R. We further adopt mode-n
unfolding to recast (31) as the following matrix optimization
problem:

Yyt =argmin |G, ~h(V),,, 09 [ +2[Y. -V
(32)

where the dimensions of g{;[n], h(YVu V), and Q[T,’l’] are

I, x (Iy -+ I_1L,4---Iy). Since the [th lateral slice of
Y., denoted as Y,(:,1,:), corresponds to the Ith row of
h(YVu V), (32) is split into 1, subproblems

VG
. 2
= argmin 1GG (@) = Bu G L DV © Qi (D) |

+/1||y,,(:,1, ) —yﬁ(:,z, :)|

where the lengths of g{; [n](l, Dy hYu(Cyl, DY)y, and
Qg;f] (,yare Iy - - I,_1 1,41 - - - Iy. Equation (33) indicates that
Y, can be updated in a distributed or parallel manner. Similar
to the update of S, the solution to (33) is only affected by the
observed entries, and thus (33) is equivalent to

Yo, = argmin [lgo, — hYu 1)V mllr

FA|PuCo L) =G| (B4

where go, € RI®I and Yo, € REXIXIXR congist of the
observed elements of g{; [n](l ,:) and Y, respectively. Herein,
Q,; only includes entries of 1 in Q[T,j](l, ;). We represent the
tensor Y, (:, 1, ;) € RR*1*R by a matrix ¥, € R®*R_Based on
the elementwise expression of tensor ring, (34) is reformulated

as follows:

2
7 forl € [1, I,,]

(33)

1911

V(L) = argn}'in 21 (8o, ())—tr(¥, xVa,C, j, I)))2
=
+j~ HYn -

YE[S. (35

To handle (35), we introduce the following lemma.
Lemma 3: [29]: Consider U € RIi*2 and V e REXN,
we have

tr(U x V) = vec(VT) vec(U). (36)
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Algorithm 1 CFN-RTC

Input: Partially observed tensor Mg € R/1*2x>Iv " binary
tensor Q € RN*2x*Iv tensor ring rank R, maximum
iteration number K, and proximal parameter A
Initialize: Randomize Y! € RR*H*R with n € [1, N] and
0° =10
for k=1,2, -, Kpx do

1) Compute 6% via (28)
2) Compute s**! via (27)
3) Update S**! based on s¥*!
forn=1:N do
for/ =1:1, do
4) Compute y*! via (40)
5) Update Y**!(:,1,:) based on y**!
end for
end for
Stop if stopping criterion is met.
end for
Output: X = hQY T PEH . Yhrt

Then, in accordance to Lemma 3, (35) is rewritten as
follows:
. 2 2
YL =argmin Hggl —Apvec(Y,) || Pt HYn -t || -
(37)
where A; € RIIXE and A,(j, :) = veeVaq, (. j,)T)T with
Jj €11, |€;]l1]. Note that the first term corresponds to a vector

optimization problem w.r.t. Y,,, while the second term is matrix
optimization. To be consistent, we reformulate (37) as follows:

v, =argmin Ay, —ga [ +ily-vil  G8)

where y,, = vec(Y,) € R®, Since (38) is a quadratic problem,
its optimal solution can be obtained by the following equation:

24] (Ary," ~ga) +24(y," ~y,) =0 (39)
resulting in the solution
-1
vl = (AT A+ D) (Afga +23).  (40)

After obtaining yﬁ“, the solution to (37) is determined as
follows:

V(L) = YET = mat(yit).

The procedure for updating yff' is complete. We name
the proposed algorithm capped Frobenius-norm-based RTC
(CFN-RTC). Its steps are summarized in Algorithm 1. The
CFN-RTC has two stopping criteria. One is to reach the
maximum iteration number K. Our experiments suggest
that Ky.x = 50 is sufficient to ensure convergence. The other
one depends on a tolerance parameter, defined as follows:

_ @S ) — Y VR
[ @5 Vi) [

In our study, when # < 107* is reached, the algorithm will
terminate.

(41)

(42)
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B. Comparison With RPCA

From (20), we see that the capped Frobenius-norm-based
formulation is converted into a form similar to RPCA.
The main difference lies on the regularization term, that is,
the £1-norm in prevailing RPCA and wy(-) in our method. The
convexity of the £;-norm generates a tractable optimization;
however, it may overpenalize large components, which causes
the solution to deviate from the ground truth. Although our
w () is nonconvex, the resultant subproblem is convex and has
a closed-form solution. On the other hand, the performance of
RPCA and our method are affected by an auxiliary parameter.
To our best knowledge, the tradeoff parameter in RPCA
requires tweaking manually to attain good performance. While
for the proposed algorithm, # is automatically updated using
a robust statistics-based method.

C. Convergence Analysis

In this section, we analyze the convergence behavior of
CFN-RTC. To facilitate presentation, the analysis is based on
a third-order tensor, that is, X = h(Y,Y,Y3) € RIEXE Tt s
worth mentioning that the analysis can be extended to higher
order tensors. We first define the objective function value as
follows:

Lo (S5, V5 V5 DY)
= [Ma — h(PVEVE) 0@ — ShI% + v (Sh).  43)

The convergence behavior of Ly« (sz,yk, A% y{;) is pro-
vided in Theorem 2.

Theorem 2: Let Ly (S, YX, V%, V%) be the objective func-
tion value generated by Algorithm 1, then we have the
following statements.

1) Ly (sk,yk, yk,y{;) is nonincreasing with all the vari-

ables’ update.

2) Lo(S*, Y5, Y5, Y% is lower bounded.

Therefore, {L(S*, VX, V5, Y¥)}ien is convergent.
The proof is provided in Appendix C.

We then analyze the sequence behavior in Theorem 3. The
definition of the critical point is first introduced using the
following lemma.

Lemma 4: [53]: Given a function ¢ (x), then x™* is a critical
point if x* meets one of the following statements.

1) Vp(x*) =0 in the case of smooth ¢ (x).

2) 0 € dp(x*) where 0p(x*) is the subgradient with the

nonsmooth ¢ (x).

Theorem 3: Let {(S*, Y%, V5, V%)) be the sequence gen-
erated by Algorithm 1. For any initialization with finite
Lo (S", P!, y;, y;), ((S*, VX, V¥, y{;)} meets the following
properties.

1) The sequence {(Sk,yk, yk,y{;)} is bounded.

2) There exists a subsequence {(skf,y’l‘f,y’;,yf;f)} con-

verging to an accumulation point (S*, Y7, V3, V3).

3) The accumulation point (8*,Y7,Y5,Y5) is a critical

point.
The proof is provided in Appendix D.
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Fig. 1. Convergence behavior of the objective function value with 50%
randomly missing data and 3-dB GMM noise.
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Fig. 2. Sequence convergence behavior of CEN-RTC with 50% randomly
missing data and 3-dB GMM noise. (a) Convergence of elements in Y.
(b) Convergence of elements in Y. (c) Convergence of elements in Y.
(d) Convergence of elements in S.

D. Complexity Analysis

Here, the analysis is also based on a third-order tensor, that
is, X = h(y1y2y3) with Y; € RRXIIXR, Y, e RRX12XR, and
y? c RRXI}XR.

Random mask Random mask Fixed mask Fixed mask

Original Impulsive noise Gaussian noise Impul

Fig. 3.

Scenery and its corrupted versions.

N
S

N
N
T

1

PSNR (dB)
S

18 — Mixed noise i
Gaussian noise
16 L L .
1 2 3 4 5 6

Fig. 4. PSNR versus (.

For the update of S, the computational complexity is
dominated by the calculation of Z(Y1Y»Y3). One efficient
method is to compute the observed entries, resulting in the
complexity of O(plI,I3R?) where p is the observation
ratio. In addition, the complexity to update 6 is O(pI, L 15).
For updating yﬁ(:,l, ) with n = 1,2,3 by (38), the com-
plexity is O(]|€;||; R*). Therefore, the complexity to update
yﬁ is O(p111213R4) due to pLlhl; = 211;1 1;]l1. As a
result, the total computational complexity is O(pI; I I3 R*) per
iteration.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the CFN-RTC using synthetic
data, real-world images, and videos. Note that 4 is set to 1078
in all the experiments. The competing methods include tensor
ring completion (TRC) [29], £,-norm based tensor train com-
pletion (£,-TTC) [37], LNOP [39], TNTV [51], TTSVD [52],
and RTC with rank estimation (RTC-RE) [54].

A. Convergence Behavior

We first verify the convergence behavior of the suggested
method based on a small-size synthetic data, i.e., M €
R!0x10x10 "The complete tensor is generated by three tensor
ring factors, namely, M, € R>*192 M, e R2¥10x2 and
M3 e R>*¥19%2 whose entries obey the standard Gaussian dis-
tribution. Then, the incomplete noise-free tensor Mg cgllsists
of randomly selected 50% entries of M. Moreover, Mg is
contaminated with independent impulsive noise which is mod-
eled by a Gaussian mixture model (GMM). The probability
density function (PDF) of GMM is given by the following
equation:

C1 l)2 (65 l)2

po(v)= N GXp( 2012)+\/E02 exp( 2022) (44)

where ¢; + ¢ = 1 with 0 < ¢; < 1, and ¢} and o} are the

variances. To simulate the impulsive noise, we take o3 > o}
and ¢, < c;. This means that sparse and high power noise
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CFN-RTC (Ours) TRC TNTV TTSVD RTC-RE
. % 15 v 1 |1 v 1 P | w i I R
PSNR =22.8759 PSNR=17.5619 PSNR =21.5063 PSNR=21.1532 PSNR=20.851 PSNR=19.8998 PSNR =20.1892
SSIM=0.81588 SSIM=0.50618 SSIM =0.65044 SSIM=0.74535 SSIM =0.68966 SSIM =0.69183 SSIM =0.71252
PSNR =229641 PSNR=23.0452 PSNR=21.5789 PSNR=20.8481 PSNR=20.3197 PSNR=19.9397 PSNR =20.2625
SSIM=0.79835 SSIM=0.79742 SSIM=0.62389 SSIM=0.7055 SSIM=0.64712 SSIM=0.67311  SSIM =0.67735
)L % - - LEP £ Sald ok SO D 0 I B
PSNR = PSNR =17.9835 PSNR=20.835 PSNR=22.6014 PSNR=20.3817 PSNR=20.4744 PSNR =22.4853
SSIM=0.83626 SSIM=0.54136 SSIM=0.66175 SSIM=0.82033 SSIM=0.6791 SSIM =0.74412  SSIM = 0.79947
. ‘.:tj:: !
% v 1 % v 1 |IF ;. 0 B | S LA B . S
PSNR =22.8947 PSNR=23.0384 PSNR=20.8143 PSNR=21.9433 PSNR=20.0957 PSNR=20.4337 PSNR =21.9957
SSIM=0.81906 SSIM=0.81799 SSIM=0.66073 SSIM=0.76876 SSIM=0.6582 SSIM =0.72086 SSIM = 0.75042
Fig. 5. Recovered Scenery images by different algorithms. The first and second rows contain the results with the random mask with impulsive noise and

Gaussian noise, respectively. The third row shows the restored images with the deterministic mask and impulsive noise, while the fourth row contains the

reconstructed pictures with deterministic mask and Gaussian noise.

25
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m
c
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/) TNTV -« -RTC-RE
. - e -TTSVD
5 : L
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Observation ratio

Fig. 6. Average PSNR (APSNR) versus observation ratio.

samples corresponding to o5 and ¢, are mixed in Gaussian
background noise with small variance of. We set o7 =
100012 and ¢, = 0.1. The signal-to-noise ratio (SNR) is defined

as follows:
_ IMali%

SNR = ———
Qo7

(45)
where 02 = Ziz:l cio} is the total noise variance.

The convergence of the objective function value is investi-
gated in Fig. 1. It is seen that the objective function value is
nonincreasing and converges within 20 iterations.

In addition, Fig. 2 depicts the sequence convergence behav-
ior of four variables, namely, Y, € R?>*10x2 ), ¢ R2x10x2,
Vi e R¥>¥10x2 and & e RI*I0x10 1t i5 noted that the
number of curves for & is much less than 1000 because of its
sparsity. We have already proved analytically the subsequence

—+—LNOP == =4, TTC [
TNTV - % -RTC-RE| - e
-e-TTSVD | T
0.05 0.1 0.15 0.2 0.25 0.3
Outlier ratio

Fig. 7.

PSNR; versus outlier ratio.

Image-2

age-1

Fig. 8. Eight images.

convergence of {(S"i,ylf,yg",y’;")}, and the simulations
corroborate our theory, showing that convergence happens
within 20 iterations in this case.
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: 1 P4
PSNR = 31.1206 PSNR = 25.4574
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PSNR =20.5139
SSIM = 0.23288

SSIM = 0.58166

g
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PSNR =29.9217
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TTSVD RTC-RE

PSNR = 28.6783
SSIM = 0.80222

m e
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SSIM = 0.7796
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SSIM = 0.82018

PSNR = 26.6895
SSIM = 0.47889

(

PSNR = 27.4247

PSNR = 27.4172

e (ad LR
PSNR =28.8123 PSNR = 26.5959

SSIM = 0.74541 SSIM = 0.74881 SSIM = 0.85318 SSIM = 0.7089 SSIM = 0.67341 SSIM = 0.71142 SSIM = 0.674
Fig. 9. Original and recovered frames for Akiyo. Top row corresponds to impulsive noise, while bottom row corresponds to Gaussian noise.
TABLE II
PERFORMANCE BY DIFFERENT ALGORITHMS ON EIGHT IMAGES WITH RANDOM MASK

Image-I  Image-2 Image-3 Image-4 Image-5 Image-6 Image-7 Image-8

PSNR; 24346 27.656 24.091 29.841 28.507 24.928 27.626 23.875

Timey 36.541 20.953 33.016 26.003 21.030 33.431 37.542 32.819

CFEN-RTC (Ours)  PSNRg 23.778 26.409 23.625 26.300 26.554 24.198 26.037 23.637
Timeg 33.118 20.474 32.825 25.719 17.228 33.017 37.126 34.814

APSNR  24.062 27.032 23.858 28.071 27.531 24.563 26.832 23.756

PSNR; 16.803 18.956 16.293 17.752 19.234 16.035 16.382 16.235

Timey 29.607 13.305 28.527 19.131 13.883 27.904 20.096 27.771

TRC [29] PSNRg 24.112 26.821 23.925 26.584 26.789 24.566 26.261 24.121
Timeg 27.431 14.952 28.394 18.731 13.274 27.896 19.189 27.451

APSNR 20456 22.889 20.109 22.168 23.012 20.301 21.322 20.178

PSNR; 23.983 24171 22.596 27181 27774 21.795 25.7706 22.082

Timey 6.419 6.889 7.222 6.536 6.620 6.479 6.485 6.592

LNOP [39] PSNRg 23.154 23.238 21.955 25.709 26.223 21.271 24.647 21.861
Timeg 6.411 6.445 6.743 6.433 6.500 6.575 6.333 6.440

APSNR  23.569 23.705 22.276 26.445 26.999 21.533 25.177 21.972

PSNR; 23.628 23959 21.987 25135 25.082 21.925 24926 22.096

Timey 17.913 18.092 14.948 20.095 19.600 15.433 22.079 16.992

TTSVD [52] PSNRg 21412 21.385 20.625 21.953 21.902 20.568 22.071 20.829
Timeg 13.815 13.535 13.103 14.121 13.985 13.696 15.965 13.582

APSNR  22.520 22.672 21.306 23.544 23.492 21.247 23.499 21.463

PSNR; 22.025 22.129 21.314 27.596 24.388 17.149 27.357 23.379

Timey 16.369 16.285 16.365 16.205 16.471 16.048 16.595 16.156

TNTV [51] PSNRg 22.281 22.171 21.963 26.611 23.696 19.425 26.232 23.392
Timeg 16.351 16.403 16.079 16.376 16.079 15.873 16.181 15.991

APSNR  22.153 22.150 21.639 27.104 24.042 19.425 26.795 23.386

PSNR; 23.126 23514 21.536 26.564 24.209 21.059 24732 21.025

Timey 95.562 89.312 99.606 91.808 90.626 96.618 90.495 98.261

£p-TTC [37] PSNRg 21.834 21.681 20.865 23.972 23.011 20.451 22.834 20.888
Timeg 93.475 90.206 96.056 97.186 97.283 90.393 95.145 89.298

APSNR  22.480 22.598 21.2001 25.268 23.610 20.755 23.783 20.957

PSNR; 22.849 23.109 21.636 26.247 27215 20.718 24474 21.309

Timey 42.797 37.532 41.957 41.873 34.929 41.479 39.143 40.474

RTC-RE [54] PSNRg 22.554 22.665 21.393 25.003 25.562 20.668 23919 21.438
Timeg 40.359 37.448 39.525 36.450 26.067 40.735 37.871 42.897

APSNR  22.701 22.887 21.514 25.625 26.389 20.693 23.851 21.374

B. Image Inpainting

One popular application of TC is color image inpaint-
ing [55]. Color images involve RGB channels, and one channel
can be modeled as a matrix. Therefore, color images can
be represented by the third-order tensors. In practice, images
may not be entirely acquired owing to the damage to the
photosensitive device or shadow cast by other objects. Further-
more, images may be corrupted by the white Gaussian noise
or impulsive noise during wireless transmission or bit errors
in the signal acquisition stage. In the following experiments,
we consider two types of noise, namely, strong Gaussian noise
with 62 = 0.01 as well as impulsive noise generated by the
mixture of weak white Gaussian noise with ¢ = 0.002 and
salt-and-pepper noise with 7 = 0.2 where o2 and 7 are the
variance and density coefficient, respectively.

The examined image is Scenery with dimensions of
256 x 256 x 3 [56]. Besides, we investigate two types of
masks, namely, random and fixed masks [57]. The random

mask implies that the image has randomly distributed missing
pixels, while the deterministic mask corresponds to regular
stripes. Fig. 3 depicts the original Scenery and four corrupted
versions, i.e., random mask with Gaussian noise, random mask
with impulsive noise, fixed mask with Gaussian noise, and
fixed mask with impulsive noise. To evaluate recovery per-
formance, two widely used metrics are adopted, namely, peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM).
Note that large PSNR and SSIM indicate good restoration
performance.

We first investigate the impact of ¢ in (29) on recovery
performance. The results are plotted in Fig. 4 where the
incomplete image has 50% randomly missing pixels. We see
that the PSNR with Gaussian noise increases with ¢, while
PSNR, in impulsive noise scenarios, first increases and then
reduces with boosting the value of (. This is because a
smaller ¢ results in a narrow confidence interval, indicating
that more entries are considered as the outlier-contaminated
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TABLE IIT
PERFORMANCE BY DIFFERENT ALGORITHMS ON EIGHT IMAGES WITH DETERMINISTIC MASK

Tmage-I  TImage-2 TImage-3 Image-4 Image-5 Image-6 Image-7 Image-8
Timey 48.004 25.606 43.112 32.849 37.388 42.130 32918 40.041
CFN-RTC (Ours)  PSNRg 24.321 27.231 24.536 28.146 27.591 25.135 27.581 24.442
Timeg 43.782 25.381 43.146 33.061 37.102 43.248 32.807 39.689
APSNR 25.015 27.485 24.764 29.334 28.202 25.227 28.254 24.403
Timey 37.452 20.922 30.012 29.166 21.598 35.521 25.561 34.812
TRC [29] PSNRg 24.531 27.448 24.669 28.356 27.668 25.313 27.595 24.289
Timeg 35.833 20.207 29.865 29.642 20.456 34.099 25.105 33.962
APSNR 21.170 23.763 21.596 24.259 24.600 21.774 23.079 21.131
PSNR; 25.536 25.704 24.065 28.696 28.668 23.665 27.141 23.204
Timey 7.306 7.248 7.286 7.689 7.205 8.228 7.361 7.494
LNOP [39] PSNRg 24.244 24.486 23.052 26.966 27.038 22.741 25.796 22.807
Timeg 7.200 7.212 7.193 7.562 7.184 7.356 7.359 7.496
APSNR 24.890 25.095 23.559 27.831 27.853 23.203 26.469 23.006
PSNR; 22.363 22.456 21.284 23.368 23.038 21.338 23.649 21.959
Timep 24.143 22.982 22.322 24.877 23.132 22.126 27.408 23.844
TTSVD [52] PSNRg 20.559 20.538 20.249 20.764 20.723 20.359 21.105 20.589
Timeg 22.752 21.709 20.739 22.518 21.808 21.616 25.935 22.811
APSNR 21.462 21.497 20.767 22.066 21.891 20.959 22.377 21.274
Timep 16.259 16.544 16.195 16.474 16.325 16.098 16.230 16.093
TNTV [51] PSNRg 21.095 22.076 21.774 24.086 24.408 19.772 24.253 22.241
Timeg 16.948 16.065 17.362 16.586 16.305 16.789 17.229 16.205
APSNR 21.148 22.572 21.643 25.144 24.879 18.799 25.180 21.781
PSNR; 23.544 24.151 23.205 27.281 27.286 22.956 25.956 21.864
Timey 135984  140.865  128.053  136.187  135.759  140.099  140.239  137.447
£p-TTC [37] PSNRg 22.751 23.548 21.485 25.089 24.899 21.818 24.559 21.701
Timeg 129.539  139.156  139.142  136.279  138.594  129.920  138.061 142.455
APSNR 23.148 23.850 22.345 26.185 26.093 22.387 25.258 21.783
PSNR; 25.127 25.494 23.840 27.748 27.792 23.762 26.544 23518
Timey 41.658 41.697 51.660 40.696 39.378 46.342 41.923 44.159
RTC-RE [54] PSNRg 23.590 23.777 22.784 25.096 25.087 22.712 24.668 22.715
Timeg 51.848 49.057 51.357 51.025 51.003 51.230 50.952 45.992
APSNR 24.358 24.636 23.312 26.422 26.440 23.237 25.606 23.117
elements. In the Gaussian noise scenarios, all the observed ——CFN-RIC (Ours) TNTV -+-TRC -« -RIC-RE
entries are not corrupted by anomalies, and thus a bigger _;Z_LNOF: _—° 'TTSVD . l":TTC . .
¢ results in better recovery performance. Under impulsive
. . . _’—”\—_/’—\
noise, a small ¢ leads to many entries to be mistaken as & 3°F —
outliers, while a very large ¢ cannot identify all the anomaly- 328 e e
contaminated entries. To achieve excellent performance in E b - -0 --9---0--0---0---G--0---0---
both types of noise, we select ¢ = 3 for the following L6 i il ot il il el kel i
experiments. i

For the four observed images in Fig. 3, the restored pictures
by CFN-RTC and its competitors are depicted in Fig. 5.
The measurement metrics are listed below the corresponding
recovered pictures. It is seen that the CFN-RTC attains the best
performance on both the random and fixed masks in the pres-
ence of impulsive noise. In Gaussian noise, the performance
of the CFN-RTC ranks second. It is worth pointing out that its
performance is close to that of TRC adopting the Frobenius
norm.

The effect of the percentage of missing pixels on per-
formance is shown in Fig. 6 in which two types of noise
are considered. The metric of APSNR signifies the average
PSNR with Gaussian noise and impulsive noise. We see that
the CFN-RTC attains better performance than TNTV, TRC,
LNOP, TTSVD, £,-TTC, and RTC-RE at all the observation
ratios. Note that the recovery accuracy of the RTC-RE severely
decreases when the missing percentage increases.

Moreover, we compare all the algorithms with different
outlier ratios. The experimental results for random mask with
50% observed data are depicted in Fig. 7. It is seen that the
CFN-RTC outperforms the existing algorithms no matter the
outlier ratio is large or small.

N
EN

Frame number

Fig. 10. APSNR of each frame on Akiyo with 50% randomly missing pixels.

Furthermore, eight well-known images, as shown in Fig. 8§,
are used to assess the inpainting performance. The results
with 50% observation ratio for random mask are tabulated
in Table II, while those of the deterministic mask are listed
in Table III. It is seen that the CFN-RTC attains the highest
PSNRs in the presence of impulsive noise, and better perfor-
mance than TNTV, LNOP, TTSVD, ¢,-TTC, and RTC-RE in
the Gaussian noise scenarios. Therefore, the average perfor-
mance of the CFN-RTC with two types of noise is superior
to all the competitors. It can be known that the capped
Frobenius norm is able to attain comparable performance to
the Frobenius norm in normal situation. On the other hand,
the runtimes of the proposed method are less than those of
¢,-TTC and TRC-RE. Our approach and TRC are slower than
LNOP, TTSVD, and TNTV since both of them adopt tensor
ring decomposition. Although tensor ring factorization has a
higher complexity than the t-SVD used by LNOP, TTSVD,
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Fig. 11.

and TNTYV, the former is able to handle higher order tensors,
while the latter can only tackle the third-order tensors.

C. Video Restoration

The second application of TC is video restoration. Since
LNOP, TTSVD, and TNTV only process the third-order ten-
sors, we adopt grayscale videos to compare the CFN-RTC
with the existing approaches. It is worth mentioning that the
CFN-RTC is able to cope with higher order tensors. The
examined dataset is YUV Video Sequences,1 and we select
two typical ones, namely, Akiyo and Hall. The dimensions
of each frame are 147 x 176. We use the first ten frames
of both the videos to assess different algorithms, which is
adopted in [39]. Thereby, the dimensions of each video are
147 x 176 x 10. The recovery performance is evaluated using
PSNR and SSIM.

Fig. 9 shows one of recovered frames of the Akiyo video
under 50% randomly missing pixels. The first row shows the
results with impulsive noise, while the second row depicts
the restored frames with Gaussian noise where Gaussian
and impulsive components are the same as the previous
settings. We see that the CFN-RTC achieves higher PSNR
and SSIM values than TRC, TNTV, LNOP, TTSVD, ¢,-TTC,
and RTC-RE in the presence of impulsive noise. In Gaussian
noise, the CFN-RTC and TRC attain better performance than
their competitors. However, the average performance of the
CFN-RTC is the best among seven algorithms. Fig. 10 shows
the plots of the average performance of all the frames. It is
seen that the APSNRs of the CEN-RTC are larger than those
of the other approaches.

Under the same condition as the Akiyo video, the results
of the Hall video are shown in Figs. 11 and 12. Fig. 11
shows one of restored frames, while Fig. 12 shows the plots
of the average performance of all the frames. It is seen that
the CFN-RTC outperforms its competitors in impulsive noise.
Although its performance ranks second in Gaussian noise, its
average performance is superior to the competing algorithms
in Fig. 12.

Furthermore, we investigate the recovery performance of
different algorithms under a high percentage of missing pix-
els, namely, 80% randomly missing pixels. The experimental

Uhttp://trace.eas.asu.edu/yuv/
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PSNR = 25.8094
SSIM =0.73484

PSNR = 25.0877
SSIM = 0.53442

PSNR =24.0911
SSIM = 0.76837

PSNR =25.0714
SSIM = 0.6425

PSNR = 24.5503
SSIM =0.67187

PSNR = 24.3216
SSIM = 0.68722

PSNR = 24.5042
SSIM = 0.67126

Original and recovered frames for Hall. Top row corresponds to impulsive noise, while bottom row corresponds to Gaussian noise.
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Fig. 12.  APSNR of each frame on Hall with 50% randomly missing pixels.
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Fig. 13. APSNR of each frame on Akiyo with 80% randomly missing pixels.
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Fig. 14. APSNR of each frame on Hall with 80% randomly missing pixels.

results are plotted in Figs. 13 and 14. It is seen that the
suggested method still attains better performance than its
competitors under a high missing percentage. Note that the
performance of the RTC-RE severely degrades when the
missing percentage increases.
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V. CONCLUSION

In this article, we have devised an RTC algorithm using
the capped Frobenius norm and tensor ring decomposition.
The upper bound of the capped Frobenius norm is automati-
cally updated using the normalized median absolute deviation
strategy. The half-quadratic theory is used to simplify the
nonconvex problem, resulting in a tractable task such that it
becomes a convex optimization w.r.t. each individual variable.
Then the PBCD method is exploited to handle the resultant
problem, yielding an algorithm called CFN-RTC. The con-
vergence behavior of the CFN-RTC is analyzed, that is, the
objective function value is guaranteed to be convergent while
the variable sequence has a subsequence to converge to a
critical point. The experimental results on real-world images
and videos demonstrate that the CFN-RTC achieves higher
recovery accuracy than six popular algorithms in the presence
of impulsive noise. Besides, its performance is comparable to
the Frobenius-norm-based method without tweaking parameter
in Gaussian noise.
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