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Abstract— Tensor completion (TC) refers to restoring the
missing entries in a given tensor by making use of the low-rank
structure. Most existing algorithms have excellent performance in
Gaussian noise or impulsive noise scenarios. Generally speaking,
the Frobenius-norm-based methods achieve excellent perfor-
mance in additive Gaussian noise, while their recovery severely
degrades in impulsive noise. Although the algorithms using the
� p-norm (0 < p < 2) or its variants can attain high restoration
accuracy in the presence of gross errors, they are inferior to
the Frobenius-norm-based methods when the noise is Gaussian-
distributed. Therefore, an approach that is able to perform well
in both Gaussian noise and impulsive noise is desired. In this
work, we use a capped Frobenius norm to restrain outliers, which
corresponds to a form of the truncated least-squares loss function.
The upper bound of our capped Frobenius norm is automatically
updated using normalized median absolute deviation during
iterations. Therefore, it achieves better performance than the
� p-norm with outlier-contaminated observations and attains com-
parable accuracy to the Frobenius norm without tuning parame-
ter in Gaussian noise. We then adopt the half-quadratic theory
to convert the nonconvex problem into a tractable multivariable
problem, that is, convex optimization with respect to (w.r.t.) each
individual variable. To address the resultant task, we exploit
the proximal block coordinate descent (PBCD) method and then
establish the convergence of the suggested algorithm. Specifically,
the objective function value is guaranteed to be convergent while
the variable sequence has a subsequence converging to a critical
point. Experimental results based on real-world images and
videos exhibit the superiority of the devised approach over several
state-of-the-art algorithms in terms of recovery performance.
MATLAB code is available at https://github.com/Li-X-P/Code-
of-Robust-Tensor-Completion.

Index Terms— Capped Frobenius norm, proximal block coor-
dinate descent, robust recovery, tensor completion (TC), tensor
ring.
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I. INTRODUCTION

TENSOR (a.k.a. multiway array) is the multidimensional
extension of scalar, vector, and matrix [1] and can repre-

sent many real-world signals, including color images, videos,
hyperspectral images, and radar data to name a few. Although
tensors can be unfolded into matrices and then be processed
by matrix techniques [2], [3], this procedure may discard the
inherent information in the high order. Therefore, multilinear
algebra for tensors is a powerful tool to analyze high-order
data.

The success of low-rank matrix recovery [4], [5] has
inspired a large number of researchers to expand the concept
to tensor completion (TC) for processing high-order data.
TC aims at recovering the missing entries of a partially
observed tensor using low-rank structure and has a wide
range of applications, such as image inpainting [6], video
restoration [7], multiple-input multiple-output (MIMO) radar
localization [8], object detection [9], background–foreground
separation [10], [11], and hyperspectral image recovery [12].
This is because the dominant information of high-dimensional
data is contained in its low-dimensional subspace.

Analogous to matrix completion, TC is intuitively formu-
lated as a rank minimization problem with the constraint that
the recovered and given tensors are identical in the observation
set. Since it is difficult to handle the rank minimization prob-
lem, most existing algorithms adopt the low-rank factorization
strategy to achieve TC. Note that various tensor decompo-
sition models generate different TC methods. For instance,
CANDECOMP/PARAFAC (CP) decomposition factorizes a
tensor into a sum of outer products of vectors [13], [14],
which has been applied to tensor restoration [15], [16], [17].
The Tucker decomposition uses one small core tensor and a
set of matrices [18], and the corresponding TC algorithms
include [19], [20]. Besides, tensor singular value decompo-
sition (t-SVD) [21] has been adopted for tensor recovery [22],
[23], [24]. In addition, tensor train factorization decomposes
an N th-order tensor into two matrices and (N − 2) third-
order tensors [25]. It has also been exploited for TC, and it
demonstrates better recovery performance than the CP decom-
position, Tucker decomposition, and t-SVD [7], [26], [27].
As an improvement of the tensor train factorization, tensor ring
decomposition factorizes an N th-order tensor into N third-
order tensors [28] and has been applied to tensor recovery [29],
[30], [31]. On the other hand, a fully connected tensor network
decomposition has been developed to restore higher order
tensors [32]. Compared with tensor train and tensor ring
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factorizations, it decomposes an N th-order tensor into N
N th-order tensors, which results in a more adequate and
flexible representation.

Despite the fact that Gaussian distribution is the most typical
noise model, non-Gaussian-distributed noise also appears in
real life [33], for example, salt-and-pepper noise in visual
data [34] and impulsive noise in communication channels [35].
The aforementioned methods adopt the Frobenius norm as
their loss function and thus they are not robust to gross errors.
Therefore, their performance might be degraded when the
observed tensor is corrupted by the outliers. To restrain anom-
alies, the �p-norm with p ∈ (0, 2) has been applied to min-
imize the recovered error, resulting in iteratively reweighted
t-SVD (IR-t-SVD) [36], �p-regression tensor train completion
(�p-TTC) [37], and trilinear alternating least absolute error
regression (TALAE) [38]. Nevertheless, the �p-norm-based
methods have relatively high computational complexity since
solving the �p-norm-based problem requires a multilayer iter-
ative procedure. Besides, the �p-norm with p ∈ (0, 1) poses a
challenge because it is a nonconvex and nonsmooth function.
To tackle this issue, Chen et al. [39] propose a logarithmic
norm to approximate the �p-norm with p ∈ (0, 1) and apply
it for tensor recovery in the presence of gross errors, yielding
an algorithm called logarithmic norm minimization and outlier
projection (LNOP). Li and So [40] suggest approximating
the �p-norm with the �p,�-norm, which demonstrates better
performance than the �p-norm in robust TC (RTC). Moreover,
the robust principal component analysis (RPCA) concept [41]
has been used for RTC, resulting in the collaborative sparse
and low-rank transforms model (CSLRT) [42] and robust
tensor ring completion (RTRC) [43].

Although the �p-norm and its variants exhibit superior
performance over the Frobenius norm in the presence of the
outliers, the former is inferior to the latter in the Gaussian
noise scenarios. Moreover, the �p-norm applies to whole ten-
sor, implying that all the elements are considered as anomaly-
contaminated. However, only a small proportions are typically
corrupted by anomalies, and thus its performance is not
optimal in impulsive noise. Conceptually, the RPCA model
attains excellent performance in both the white Gaussian noise
and gross error scenarios. Nevertheless, in practice, its solution
depends on the choice of the regularization parameter. That is,
for different data and noise, practitioners need to carefully
adjust the penalty parameter to achieve good performance,
which is time-consuming.

In this work, our aim is to devise an RTC method to
suppress the white Gaussian noise and/or impulsive noise
without the need to tune any parameter. We address RTC using
the idea of the capped Frobenius norm, corresponding to a
form of the truncated least-squares loss function [44], [45].
The interpretation of the upper bound of this norm is
the boundary between the normal and outlier-contaminated
entries. Therefore, we exploit the normalized median absolute
deviation strategy to update the bound, such that the capped
Frobenius norm is capable of effectively resisting the white
Gaussian noise and/or impulsive noise. We then combine
the capped Frobenius norm with tensor ring decomposition
to tackle RTC. Although the capped Frobenius norm is

nonconvex, we use the half-quadratic theory [46], [47] to con-
vert the resultant problem into a tractable form, that is, convex
optimization with respect to (w.r.t.) each individual variable.
Subsequently, we adopt the proximal block coordinate descent
(PBCD) method [48] to handle the multivariable optimization
in which one block is updated while the remaining blocks
are fixed at each iteration. Moreover, we establish the conver-
gence of the proposed algorithm. Specifically, the suggested
method ensures the objective function value to converge and
the variable sequence to have a subsequence converging to
a critical point. Our main contributions are summarized as
follows.

1) We adopt the normalized median absolute deviation to
obtain a robust standard deviation of the fitting error.
Then, given a confidence interval, the upper bound is
adaptively determined. Therefore, the capped Frobenius
norm achieves excellent performance in the presence of
Gaussian noise and/or impulsive noise.

2) We simplify the capped Frobenius norm based formula-
tion into a Frobenius norm optimization with a regular-
ization term. Then, PBCD is adopted as the solver, and
all the subproblems have closed-form solutions.

3) We analyze the convergence behavior of the proposed
algorithm. We prove that the objective function value is
guaranteed to be convergent while the variable sequence
contains a subsequence converging to a critical point.

4) Experimental results using real-world images and videos
demonstrate that the devised approach is superior to
popular robust methods in the presence of impulsive
noise. In addition, without tuning any parameter, the
performance of our method approaches that of the
Frobenius-norm-based approach in the white Gaussian
noise scenarios.

The remainder of this article is organized as follows.
In Section II, we introduce notations and preliminaries. The
proposed algorithm is presented in Section III. Besides,
we analyze its convergence behavior and computational com-
plexity. In Section IV, numerical examples are included to
evaluate the devised method by comparing with several state-
of-the-art algorithms. Finally, concluding remarks are given
in Section V.

II. BACKGROUND

In this section, notations and basic definitions are provided,
and relevant works are reviewed.

A. Notations

Scalars, vectors, matrices, and tensors are denoted by italic,
bold lower case, bold upper case, and bold calligraphic letters,
respectively. For example, XXX ∈ R

I1×I2×···×IN signifies an
N th-order tensor, and its (l1, l2, . . . , lN ) entry is denoted by
xl1,l2 ,...,lN or XXX (l1, l2, . . . , lN ). The mode-n unfolding of XXX
is represented by XXX [n] ∈ R

In×(I1···In1 In+1 ···IN ). Given a ten-
sor XXX ∈ R

I1×I2×I3 , its Frobenius norm and �p-norm with
p ∈ (0, 2) are �XXX �F = (

∑I1
i=1

∑I2
j=1

∑I3
k=1 x2

i, j,k)
1/2 and

�XXX�p = (
∑I1

i=1

∑I2
j=1

∑I3
k=1 x p

i, j,k)
1/p, respectively. Consider

a matrix XXX ∈ R
I1×I2 , XXX T is the transpose of XXX , and tr(XXX) =∑min(I1,I2)

i=1 xi,i is the trace of XXX . The vectorization operator
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TABLE I

LIST OF NOTATIONS

is defined as vec(XXX) = [xxxT:,1; xxxT:,2; · · · ; xxxT
:,I2

]T where xxx :, j for
j ∈ [1, I2] stands for the j th column of XXX , while mat(·) is the
matrization operator, such that mat(vec(XXX)) = XXX . Moreover,
� and ◦ signify the Hadamard product and outer product oper-
ators, respectively. Other mathematical symbols are defined in
their first appearance. The notations are summarized in Table I.

B. Basic Operations

Similar to the matrix product, the tensor product of XXX ∈
R

I1×I2×I3 and YYY ∈ R
I3×I4×I5 is defined as XXXYYY = ZZZ ∈

R
I1×(I2 I4)×I5 [49], and it is computed as follows:

ZZZ(:, l2 × l4, :) = XXX (:, l2, :)YYY(:, l4, :) (1)

where l2 ∈ [1, I2], l4 ∈ [1, I4], and XXX (:, l, :) stands for the
lth lateral slice of XXX .

In addition, the tensor permutation operation of XXX ∈
R

I1×I2×···×IN is represented by XXX Tn [49]. The relationship
between XXX Tn and XXX is

XXX Tn (ln, . . . , lN , l1, . . . , ln−1) = XXX (l1, l2, . . . , lN ). (2)

Since the proposed algorithm is based on tensor ring
decomposition, we briefly introduce it for completeness.
Tensor ring decomposition factorizes an N th-order tensor
XXX ∈ R

I1×I2×···×IN into N third-order tensors [28]

XXX =
R1,...,RN∑

r1,...,rN =1

YYY1(r1, :, r2)◦YYY2(r2, :, r3)◦· · ·◦YYYN (rN , :, r1)

(3)

where YYYn ∈ R
Rn×In×Rn+1 , RRR = [R1, . . . , RN ] is the multilinear

tensor ring rank, and YYYn(rn, :, rn+1) is the vertical fiber.
Besides, the entrywise formulation is

XXX (l1,· · ·, lN )=tr
(
YYY1(:, l1, :)YYY2(:, l2, :) · · ·YYYN (:, lN , :)

)
. (4)

In this work, (3) is represented by XXX = h(YYY1 · · ·YYYN ) for
conciseness.

C. Related Work

Consider a partially observed tensor MMM��� ∈ R
I1×···×IN where

��� ∈ R
I1×···×IN is a binary tensor, consisting of 0 and 1.

In ���, �l1,...,lN = 1 signifies that the corresponding ml1,...,lN is
observed, while �l1,...,lN = 0 indicates a missing entry, namely,
ml1,...,lN = 0. Therefore, MMM��� has the form of

MMM��� = MMM ����. (5)

As in matrix completion, TC can be formulated as a rank
minimization problem

min
XXX

rank(XXX ), s.t. XXX ���� = MMM� (6)

where XXX ∈ R
I1×···×IN . Since the rank function is nonconvex

and discrete, Zhang et al. [50] propose using tensor nuclear
norm instead of the rank function to solve (6), leading to

min
XXX

�XXX �TNN, s.t. XXX ���� = MMM� (7)

where �·�TNN denotes the tensor nuclear norm, defined in [50].
Since the tensor nuclear norm is defined based on the third-
order tensors, its application is limited. To handle higher
order tensors, Wang et al. [29] suggest exploiting tensor
ring decomposition to formulate the tensor recovery problem,
resulting in

min
YYYn:n=1,...,N

�MMM��� − h(YYY1 · · ·YYYN )�����2
F . (8)

However, the above-mentioned methods are not robust to
the outliers since they adopt the Frobenius norm for error
minimization. Consider a linear regression problem based on
the Frobenius norm

min
XXX

�AAAXXX − YYY�2
F = min

xxx :, j

I1∑
i=1

I2∑
j=1

(aaai,:xxx :, j − yi, j)
2. (9)

If yi, j with i ∈ [1, I1] and j ∈ [1, I2] is corrupted by an
outlier, the ratio between the corresponding residual |aaai,:xxx :, j −
yi, j | and that of a normal entry is severely enlarged by the
Frobenius norm. Then, to minimize the whole fitting error,
xxx :, j will tend to reduce (aaai,:xxx :, j − yi, j)

2. For instance, consider
AAA = [1, 2; 3, 4], XXX = [−0.05,−0.3; 0.075, 0.275], and YYY =
[0.1, 0.25; 0.15, 0.2]. If YYY is mixed with the white Gaussian
noise, leading to ỸYY = [0.0941, 0.2685; 0.1360, 0.2182], then
X̃XX = AAA−1ỸYY = [−0.0521,−0.3189; 0.0731, 0.2937]. How-
ever, if y1,1 is corrupted by an anomaly, such that ỸYY =
[3, 0.25; 0.15, 0.2], then X̃XX = [−5.85,−0.3; 4.425, 0.275].
That is, the Frobenius-norm-based solution deviates much
from the ground truth.

One of the prevailing methods to resist anomalies is to adopt
the �p-norm with p ∈ (0, 2) as the loss function [39], leading
to

min
XXX

�XXX �L, s.t. �XXX ����−MMM��p ≤ δ (10)

where δ > 0 is a tolerance parameter to control the fitting
error, and �·�L is defined as the logarithmic norm; see [39].
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Another strategy is to exploit RPCA, and the correspond-
ing algorithms include tensor nuclear norm with total vari-
ation regularization (TNTV) [51] and transformed t-SVD
(TTSVD) [52]. Specifically, TTSVD considers the following
optimization problem:

min
XXX ,LLL,SSS

�LLL�TTNN + μ�SSS�1

s.t. LLL + SSS = XXX , XXX ���� = MMM� (11)

where μ > 0 is the penalty parameter, and �·�TTNN is the trans-
formed tubal nuclear norm, as defined in [52]. Ideally, (11) is
able to attain good performance in both the Gaussian noise
and impulsive noise via tweaking μ. However, it is time-
consuming to tune μ to attain satisfactory performance for
different data and noise environments.

III. PROPOSED ALGORITHM

In this section, we first present the suggested method.
Then, we analyze its convergence behavior and computational
complexity.

A. Algorithm Development

To restrain gross errors, we suggest solving tensor recovery
using the capped Frobenius norm, defined as follows:

�XXX �CF =
√√√√ I1,...,IN∑

l1,...,lN =1

min
(
x2

l1,...,lN
, θ2

)
(12)

where θ > 0 is an upper bound to suppress anomalies.
Note that the upper limit θ can be considered as the thresh-
old for differentiating the normal and anomaly-contaminated
elements. In this study, we adopt the normalized median
absolute deviation for its adaptive determination, which is
shortly introduced in (28).

Before proceeding, we highlight the advantages of the
capped Frobenius norm over the Frobenius norm and
�p-norm with p ∈ (0, 2). Compared with the Frobenius norm,
in impulsive noise, the capped Frobenius norm is able to
restrain the outliers. When there are no outliers, it reverts to
the Frobenius norm. In comparison to the �p-norm, the capped
Frobenius norm resists gross errors, but it does not affect
the normal entries. As a result, the capped Frobenius norm
has a better performance than the �p-norm in the presence of
impulsive noise, as well as achieves comparable performance
to the Frobenius norm in the Gaussian noise scenarios.

We then combine the capped Frobenius norm with tensor
ring decomposition to formulate the RTC problem as follows:

min
YYYn:n=1,...,N

�MMM���−h(YYY1 · · ·YYYN )�����2
CF (13)

where YYYn ∈ R
R×In×R with R being the predefined multilinear

tensor ring rank. Since the capped Frobenius norm is non-
convex, (13) w.r.t. each variable is nonconvex. We exploit
the half-quadratic theory to convert (13) into a tractable
problem, such that it is a convex optimization w.r.t. each
individual variable. The relevant background is introduced in
the following lemma.

Lemma 1: [46]: Given φ(y) and ψ(x), if φ(y) makes
f (y) = y2 − φ(y) convex, and ψ(x) generates a convex
function g(x) = x2 + ψ(x), then we have

φ(y) = inf
x
((y − x)2 + ψ(x)), y ∈ (−∞,+∞) (14a)

ψ(x) = sup
y
(−(y − x)2 + φ(y)), x ∈ (−∞,+∞). (14b)

Based on Lemma 1, we derive an equivalent convex function
of φθ(y) = min (y2, θ2), as described in Theorem 1.

Theorem 1: Let φθ(y) = min (y2, θ2), then minimizing
φθ(y) is equivalent to

min
x,y

(y − x)2 + ψθ(x) (15)

where ψθ(x) is

ψθ(x) =
{

−(θ − |x |)2 + θ2, |x | < θ
θ2 |x | ≥ θ.

(16)

The proof is provided in Appendix A. Note that all the
appendices are presented in supplementary material.

Moreover, we introduce a set 	 involving the coordinates
of the observed entries in MMM���, defined as follows:

	 = {(l1, . . . , lN )|�l1,...,lN = 1}. (17)

Based on 	, (13) is reexpressed as follows:
min

YYYn:n=1,...,N

∑
(l1,...,lN )∈	

φθ(ml1,...,lN −h(YYY1 · · ·YYYN )l1,...,lN )
2. (18)

In accordance to Theorem 1, (18) is equivalent to

min
YYYn:n=1,...,N

∑
(l1,...,lN )∈	

(
(ml1,...,lN − h(YYY1 · · ·YYYN )l1,...,lN

−sl1,...,lN )
2 + ψθ(sl1 ,...,lN )

)
. (19)

Defining ψθ(SSS���) = ∑
(l1,...,lN )∈	 ψθ(sl1 ,...,lN ), (19) is then

reformulated as follows:
min

SSS,YYYn:n=1,...,N

�MMM���−h(YYY1 · · ·YYYN )����−SSS����2
F +ψθ(SSS���). (20)

It is clear that (20) is a multivariable nonconvex optimization
problem, but w.r.t. each individual variable, it is convex.
To tackle (20), PBCD is adopted as the solver, resulting in
the following iterative procedure:
SSSk+1 = arg min

SSS

∥∥MMM��� − h
(YYYk

1YYYk
2 · · ·YYYk

N

) ����−SSS���
∥∥2

F

+ψθ(SSS���) (21a)

YYYk+1
1 = arg min

YYY1

∥∥MMM��� − h
(YYY1YYYk

2 · · ·YYYk
N

) ����−SSSk+1
���

∥∥2
F

+λ∥∥YYY1 −YYYk
1

∥∥2
F

(21b)

YYYk+1
2 = arg min

YYY2

∥∥MMM��� − h
(YYYk+1

1 YYY2 · · ·YYYk
N

)����−SSSk+1
���

∥∥2
F

+λ∥∥YYY2 −YYYk
2

∥∥2
F

(21c)
...

YYYk+1
N = arg min

YYYN

∥∥MMM���−h
(YYYk+1

1 YYYk+1
2 · · ·YYYN

)����−SSSk+1
���

∥∥2
F

+λ∥∥YYYN −YYYk
N

∥∥2
F

(21d)
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where λ > 0 is the proximal parameter. It is seen that the
PBCD alternately updates one of the variables with fixing the
N remaining variables at each iteration.

We first tackle (21a). It is easy to know that its solution is
only determined by the entries with (l1, . . . , lN ) ∈ 	. We thus
reformulate (21a) as a vector optimization problem

sssk+1 = arg min
sss

�rrrk − sss�2
2 + ψθ(sss) (22)

where rrrk ∈ R
�����1 consists of the observed entries of RRRk

��� =
MMM��� − h(YYYk

1YYYk
2 · · ·YYYk

N ) � ���. The procedure for obtaining rrr
from RRRk

��� is illustrated with the use of a third-order tensor as
follows. Given ��� ∈ R

2×3×2, such that

���:,:,1 =
[

0 1 0
1 0 1

]
and ���:,:,2 =

[
1 0 1
0 1 0

]
. (23a)

Then, rrrk = [rk
2,1,1, r

k
1,2,1, r

k
2,3,1, r

k
1,1,2, r

k
2,2,2, r

k
1,3,2] with rk

i, j,k

being the (i, j, k) entry of RRRk
���.

We then derive the closed-form solution to (22), describing
in the following lemma.

Lemma 2: For the following optimization problem:
sk+1 = arg min

s
ϕ(s) = arg min

s
(r − s)2 + ψθ(s). (24)

Its optimal solution is Tθ (r), defined as follows:

sk+1 = Tθ (r) =
{

0, |r | < θ

r, |r | ≥ θ.
(25)

Besides, the subgradient of ϕ(s) at minimizer sk+1 is

∂ϕ
(
sk+1) =

{
0 ∈ [−(r + θ), θ − r ], |r | < θ
0, |r | ≥ θ.

(26)

The proof is provided in Appendix B.
In (22), sk+1

i only depends on rk
i , and hence its optimal

solution is

sssk+1 = Tθ k (rrrk). (27)

Note that sssk+1 is affected by the parameter θ k . We suggest
updating θ k prior to computing sssk+1 for better performance.
Since rrrk is defined as the fitting error at the kth iteration,
if the mean of the fitting error is assumed 0, −θ < r < θ
is considered as a confidence interval to identify anom-
alies. To guarantee the convergence, it requires θ k to be
nonincreasing

θ k = min(θ̂ , θ k−1) (28)

where θ̂ is determined by a robust measure for standard
deviation, namely, the normalized median absolute deviation
method [33]

θ̂ = ζ × 1.4826 × Med(|rrrk − Med(rrrk)|). (29)

Here, ζ > 0 controls the confidence interval range, and
Med(·) is the sample median operator. In Section IV, we will
investigate the impact of ζ on the recovery performance in the
Gaussian noise and impulsive noise scenarios.

After obtaining sssk+1, SSSk+1 is updated via the inverse oper-
ation of constructing rrrk from RRRk

���.

We then handle (21b)–(21d). Since they have the same
structure, we detail the derivation procedure for one of them,
say YYYk+1

n , without loss of generality. To simplify expressions,
the optimization problem for updating YYYk+1

n is reexpressed as
follows:
YYYk+1

n =argmin
YYYn

∥∥GGG���−h
(YYYk+1

1 · · ·YYYk+1
n−1YYYnYYYk

n+1· · ·YYYk
N

)����∥∥2
F

+λ∥∥YYYn −YYYk
n

∥∥2
F

(30)

where GGG��� = MMM��� − SSSk+1
��� . Using tensor permutation opera-

tion, (30) is equivalent to

YYYk+1
n =arg min

YYYn

∥∥GGGTn
��� − h

(YYYnYYY
) ����Tn

∥∥2
F

+ λ
∥∥YYYn −YYYk

n

∥∥2
F

(31)

where YYY = YYYk
n+1 · · ·YYYk

NYYYk+1
1 · · ·YYYk+1

n−1 with the dimensions
of R × (In+1 · · · IN I1 · · · In−1)× R. We further adopt mode-n
unfolding to recast (31) as the following matrix optimization
problem:
YYYk+1

n =arg min
YYYn

∥∥GGGTn
��� [n]−h

(YYYnYYY
)
[n]����Tn

[n]
∥∥2

F
+λ∥∥YYYn −YYYk

n

∥∥2
F

(32)

where the dimensions of GGGTn
��� [n], h(YYYnYYY)[n], and ���Tn

[n] are

In × (I1 · · · In−1 In+1 · · · IN ). Since the lth lateral slice of
YYYn , denoted as YYYn(:, l, :), corresponds to the lth row of
h(YYYnYYY)[n], (32) is split into In subproblems

YYYk+1
n (:, l, :)

= arg min
YYYn

∥∥GGGTn
��� [n](l, :)− h(YYYn(:, l, :)YYY)[n] ����Tn

[n](l, :)
∥∥2

F

+λ∥∥YYYn(:, l, :)−YYYk
n(:, l, :)

∥∥2
F
, for l ∈ [1, In] (33)

where the lengths of GGGTn
��� [n](l, :), h(YYYn(:, l, :)YYY)[n], and

���Tn
[n](l, :) are I1 · · · In−1 In+1 · · · IN . Equation (33) indicates that

YYYn can be updated in a distributed or parallel manner. Similar
to the update of SSS, the solution to (33) is only affected by the
observed entries, and thus (33) is equivalent to

YYYk+1
n (:, l, :) = arg min

YYYn

�ggg���l − h(YYYn(:, l, :)YYY���l )[n]�2
F

+λ∥∥YYYn(:, l, :)−YYYk
n(:, l, :)

∥∥2
F

(34)

where ggg���l ∈ R
����l �1 and YYY���l ∈ R

R×����l �1×R consist of the
observed elements of GGGTn

��� [n](l, :) and YYY , respectively. Herein,

���l only includes entries of 1 in ���Tn
[n](l, :). We represent the

tensor YYYn(:, l, :) ∈ R
R×1×R by a matrix YYY n ∈ R

R×R . Based on
the elementwise expression of tensor ring, (34) is reformulated
as follows:

YYYk+1
n (:, l, :) = arg min

YYY n

����l �1∑
j=1

(
ggg���l ( j)−tr(YYY n ×YYY���l (:, j, :)))2

+λ∥∥YYY n − YYY k
n

∥∥2
F
. (35)

To handle (35), we introduce the following lemma.
Lemma 3: [29]: Consider UUU ∈ R

I1×I2 and VVV ∈ R
I2×I1 ,

we have

tr(UUU × VVV ) = vec(VVV T )T vec(UUU). (36)
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Algorithm 1 CFN-RTC

Input: Partially observed tensor MMM��� ∈ R
I1×I2×···×IN , binary

tensor ��� ∈ R
I1×I2×···×IN , tensor ring rank R, maximum

iteration number Kmax, and proximal parameter λ
Initialize: Randomize YYY1

n ∈ R
R×In×R with n ∈ [1, N] and

θ0 = 10
for k = 1, 2, · · · , Kmax do

1) Compute θ k via (28)
2) Compute sssk+1 via (27)
3) Update SSSk+1 based on sssk+1

for n = 1 : N do
for l = 1 : In do

4) Compute yyyk+1
n via (40)

5) Update YYYk+1
n (:, l, :) based on yyyk+1

n
end for

end for
Stop if stopping criterion is met.

end for
Output: XXX = h(YYYk+1

1 YYYk+1
2 · · ·YYYk+1

N )

Then, in accordance to Lemma 3, (35) is rewritten as
follows:
YYYk+1

n (:, l, :)=arg min
YYY n

∥∥ggg���l −AAAlvec(YYY n)
∥∥2

F +λ∥∥YYY n −YYY k
n

∥∥2
F

(37)

where AAAl ∈ R
����l �1×R2

and AAAl( j, :) = vec(YYY���l (:, j, :)T )T with
j ∈ [1, ����l�1]. Note that the first term corresponds to a vector
optimization problem w.r.t. YYY n , while the second term is matrix
optimization. To be consistent, we reformulate (37) as follows:

yyyk+1
n =arg min

yyyn

∥∥AAAl yyyn −ggg���l

∥∥2
F
+λ∥∥yyyn −yyyk

n

∥∥2
F

(38)

where yyyn = vec(YYY n) ∈ R
R2

. Since (38) is a quadratic problem,
its optimal solution can be obtained by the following equation:

2AAAT
l

(
AAAl yyy

k+1
n −ggg���l

)+2λ
(
yyyk+1

n −yyyk
n

) = 000 (39)

resulting in the solution

yyyk+1
n =

(
AAAT

l AAAl + λIII
)−1(

AAAT
l ggg���l + λyyyk

n

)
. (40)

After obtaining yyyk+1
n , the solution to (37) is determined as

follows:
YYYk+1

n (:, l, :) = YYY k+1
n = mat

(
yyyk+1

n

)
. (41)

The procedure for updating YYYk+1
n is complete. We name

the proposed algorithm capped Frobenius-norm-based RTC
(CFN-RTC). Its steps are summarized in Algorithm 1. The
CFN-RTC has two stopping criteria. One is to reach the
maximum iteration number Kmax. Our experiments suggest
that Kmax = 50 is sufficient to ensure convergence. The other
one depends on a tolerance parameter, defined as follows:

η =
∥∥h

(YYYk+1
1 YYYk+1

2 · · ·YYYk+1
N

) − h
(YYYk

1YYYk
2 · · ·YYYk

N

)∥∥2
F∥∥h

(YYYk
1YYYk

2 · · ·YYYk
N

)∥∥2
F

. (42)

In our study, when η < 10−4 is reached, the algorithm will
terminate.

B. Comparison With RPCA

From (20), we see that the capped Frobenius-norm-based
formulation is converted into a form similar to RPCA.
The main difference lies on the regularization term, that is,
the �1-norm in prevailing RPCA and ψθ(·) in our method. The
convexity of the �1-norm generates a tractable optimization;
however, it may overpenalize large components, which causes
the solution to deviate from the ground truth. Although our
ψθ(·) is nonconvex, the resultant subproblem is convex and has
a closed-form solution. On the other hand, the performance of
RPCA and our method are affected by an auxiliary parameter.
To our best knowledge, the tradeoff parameter in RPCA
requires tweaking manually to attain good performance. While
for the proposed algorithm, θ is automatically updated using
a robust statistics-based method.

C. Convergence Analysis

In this section, we analyze the convergence behavior of
CFN-RTC. To facilitate presentation, the analysis is based on
a third-order tensor, that is, XXX = h(YYY1YYY2YYY3) ∈ R

I1×I2×I3 . It is
worth mentioning that the analysis can be extended to higher
order tensors. We first define the objective function value as
follows:

Lθ k

(SSSk
���,YYYk

1,YYYk
2,YYYk

3

)
= ∥∥MMM��� − h

(YYYk
1YYYk

2YYYk
3

) ����− SSSk
���

∥∥2
F

+ ψθ k

(SSSk
���

)
. (43)

The convergence behavior of Lθ k (SSSk
���,YYYk

1,YYYk
2,YYYk

3) is pro-
vided in Theorem 2.

Theorem 2: Let Lθ k (SSSk,YYYk
1,YYYk

2,YYYk
3) be the objective func-

tion value generated by Algorithm 1, then we have the
following statements.

1) Lθ k (SSSk,YYYk
1,YYYk

2,YYYk
3) is nonincreasing with all the vari-

ables’ update.
2) Lθ k (SSSk,YYYk

1,YYYk
2,YYYk

3) is lower bounded.
Therefore, {Lθ k (SSSk,YYYk

1,YYYk
2,YYYk

3)}k∈N is convergent.
The proof is provided in Appendix C.

We then analyze the sequence behavior in Theorem 3. The
definition of the critical point is first introduced using the
following lemma.

Lemma 4: [53]: Given a function ϕ(x), then x∗ is a critical
point if x∗ meets one of the following statements.

1) ∇ϕ(x∗) = 0 in the case of smooth ϕ(x).
2) 0 ∈ ∂ϕ(x∗) where ∂ϕ(x∗) is the subgradient with the

nonsmooth ϕ(x).
Theorem 3: Let {(SSSk,YYYk

1,YYYk
2,YYYk

3)} be the sequence gen-
erated by Algorithm 1. For any initialization with finite
Lθ 1(SSS1,YYY1

1,YYY1
2,YYY1

3), {(SSSk,YYYk
1,YYYk

2,YYYk
3)} meets the following

properties.
1) The sequence {(SSSk,YYYk

1,YYYk
2,YYYk

3)} is bounded.
2) There exists a subsequence {(SSSki ,YYYki

1 ,YYYki
2 ,YYYki

3 )} con-
verging to an accumulation point (SSS∗,YYY∗

1,YYY∗
2,YYY∗

3).
3) The accumulation point (SSS∗,YYY∗

1,YYY∗
2,YYY∗

3) is a critical
point.

The proof is provided in Appendix D.
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Fig. 1. Convergence behavior of the objective function value with 50%
randomly missing data and 3-dB GMM noise.

Fig. 2. Sequence convergence behavior of CFN-RTC with 50% randomly
missing data and 3-dB GMM noise. (a) Convergence of elements in YYY1.
(b) Convergence of elements in YYY2. (c) Convergence of elements in YYY3.
(d) Convergence of elements in SSS .

D. Complexity Analysis

Here, the analysis is also based on a third-order tensor, that
is, XXX = h(YYY1YYY2YYY3) with YYY1 ∈ R

R×I1×R, YYY2 ∈ R
R×I2×R, and

YYY3 ∈ R
R×I3×R .

Fig. 3. Scenery and its corrupted versions.

Fig. 4. PSNR versus ζ .

For the update of SSS, the computational complexity is
dominated by the calculation of h(YYY1YYY2YYY3). One efficient
method is to compute the observed entries, resulting in the
complexity of O(pI1 I2 I3 R3) where p is the observation
ratio. In addition, the complexity to update θk is O(pI1 I2 I3).
For updating YYYk

n(:, l, :) with n = 1, 2, 3 by (38), the com-
plexity is O(����l�1 R4). Therefore, the complexity to update
YYYk

n is O(pI1 I2 I3 R4) due to pI1 I2 I3 = ∑In
l=1 ����l�1. As a

result, the total computational complexity is O(pI1 I2 I3 R4) per
iteration.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the CFN-RTC using synthetic
data, real-world images, and videos. Note that λ is set to 10−8

in all the experiments. The competing methods include tensor
ring completion (TRC) [29], �p-norm based tensor train com-
pletion (�p-TTC) [37], LNOP [39], TNTV [51], TTSVD [52],
and RTC with rank estimation (RTC-RE) [54].

A. Convergence Behavior

We first verify the convergence behavior of the suggested
method based on a small-size synthetic data, i.e., MMM ∈
R

10×10×10. The complete tensor is generated by three tensor
ring factors, namely, MMM1 ∈ R

2×10×2, MMM2 ∈ R
2×10×2, and

MMM3 ∈ R
2×10×2 whose entries obey the standard Gaussian dis-

tribution. Then, the incomplete noise-free tensor MMM��� consists
of randomly selected 50% entries of MMM. Moreover, M̃MM��� is
contaminated with independent impulsive noise which is mod-
eled by a Gaussian mixture model (GMM). The probability
density function (PDF) of GMM is given by the following
equation:

pv(v)= c1√
2πσ1

exp

(
− v2

2σ 2
1

)
+ c2√

2πσ2
exp

(
− v2

2σ 2
2

)
(44)

where c1 + c2 = 1 with 0 < ci < 1, and σ 2
1 and σ 2

2 are the
variances. To simulate the impulsive noise, we take σ 2

2 � σ 2
1

and c2 < c1. This means that sparse and high power noise
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Fig. 5. Recovered Scenery images by different algorithms. The first and second rows contain the results with the random mask with impulsive noise and
Gaussian noise, respectively. The third row shows the restored images with the deterministic mask and impulsive noise, while the fourth row contains the
reconstructed pictures with deterministic mask and Gaussian noise.

Fig. 6. Average PSNR (APSNR) versus observation ratio.

samples corresponding to σ 2
2 and c2 are mixed in Gaussian

background noise with small variance σ 2
1 . We set σ 2

2 =
100σ 2

1 and c2 = 0.1. The signal-to-noise ratio (SNR) is defined
as follows:

SNR = �MMM����2
F

�����1σ 2
v

(45)

where σ 2
v = ∑2

i=1 ciσ
2
i is the total noise variance.

The convergence of the objective function value is investi-
gated in Fig. 1. It is seen that the objective function value is
nonincreasing and converges within 20 iterations.

In addition, Fig. 2 depicts the sequence convergence behav-
ior of four variables, namely, YYY1 ∈ R

2×10×2, YYY2 ∈ R
2×10×2,

YYY3 ∈ R
2×10×2, and SSS ∈ R

10×10×10. It is noted that the
number of curves for SSS is much less than 1000 because of its
sparsity. We have already proved analytically the subsequence

Fig. 7. PSNRI versus outlier ratio.

Fig. 8. Eight images.

convergence of {(SSSki ,YYYki
1 ,YYYki

2 ,YYYki
3 )}, and the simulations

corroborate our theory, showing that convergence happens
within 20 iterations in this case.
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Fig. 9. Original and recovered frames for Akiyo. Top row corresponds to impulsive noise, while bottom row corresponds to Gaussian noise.

TABLE II

PERFORMANCE BY DIFFERENT ALGORITHMS ON EIGHT IMAGES WITH RANDOM MASK

B. Image Inpainting
One popular application of TC is color image inpaint-

ing [55]. Color images involve RGB channels, and one channel
can be modeled as a matrix. Therefore, color images can
be represented by the third-order tensors. In practice, images
may not be entirely acquired owing to the damage to the
photosensitive device or shadow cast by other objects. Further-
more, images may be corrupted by the white Gaussian noise
or impulsive noise during wireless transmission or bit errors
in the signal acquisition stage. In the following experiments,
we consider two types of noise, namely, strong Gaussian noise
with σ 2 = 0.01 as well as impulsive noise generated by the
mixture of weak white Gaussian noise with σ 2 = 0.002 and
salt-and-pepper noise with τ = 0.2 where σ 2 and τ are the
variance and density coefficient, respectively.

The examined image is Scenery with dimensions of
256 × 256 × 3 [56]. Besides, we investigate two types of
masks, namely, random and fixed masks [57]. The random

mask implies that the image has randomly distributed missing
pixels, while the deterministic mask corresponds to regular
stripes. Fig. 3 depicts the original Scenery and four corrupted
versions, i.e., random mask with Gaussian noise, random mask
with impulsive noise, fixed mask with Gaussian noise, and
fixed mask with impulsive noise. To evaluate recovery per-
formance, two widely used metrics are adopted, namely, peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM).
Note that large PSNR and SSIM indicate good restoration
performance.

We first investigate the impact of ζ in (29) on recovery
performance. The results are plotted in Fig. 4 where the
incomplete image has 50% randomly missing pixels. We see
that the PSNR with Gaussian noise increases with ζ , while
PSNR, in impulsive noise scenarios, first increases and then
reduces with boosting the value of ζ . This is because a
smaller ζ results in a narrow confidence interval, indicating
that more entries are considered as the outlier-contaminated
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TABLE III

PERFORMANCE BY DIFFERENT ALGORITHMS ON EIGHT IMAGES WITH DETERMINISTIC MASK

elements. In the Gaussian noise scenarios, all the observed
entries are not corrupted by anomalies, and thus a bigger
ζ results in better recovery performance. Under impulsive
noise, a small ζ leads to many entries to be mistaken as
outliers, while a very large ζ cannot identify all the anomaly-
contaminated entries. To achieve excellent performance in
both types of noise, we select ζ = 3 for the following
experiments.

For the four observed images in Fig. 3, the restored pictures
by CFN-RTC and its competitors are depicted in Fig. 5.
The measurement metrics are listed below the corresponding
recovered pictures. It is seen that the CFN-RTC attains the best
performance on both the random and fixed masks in the pres-
ence of impulsive noise. In Gaussian noise, the performance
of the CFN-RTC ranks second. It is worth pointing out that its
performance is close to that of TRC adopting the Frobenius
norm.

The effect of the percentage of missing pixels on per-
formance is shown in Fig. 6 in which two types of noise
are considered. The metric of APSNR signifies the average
PSNR with Gaussian noise and impulsive noise. We see that
the CFN-RTC attains better performance than TNTV, TRC,
LNOP, TTSVD, �p-TTC, and RTC-RE at all the observation
ratios. Note that the recovery accuracy of the RTC-RE severely
decreases when the missing percentage increases.

Moreover, we compare all the algorithms with different
outlier ratios. The experimental results for random mask with
50% observed data are depicted in Fig. 7. It is seen that the
CFN-RTC outperforms the existing algorithms no matter the
outlier ratio is large or small.

Fig. 10. APSNR of each frame on Akiyo with 50% randomly missing pixels.

Furthermore, eight well-known images, as shown in Fig. 8,
are used to assess the inpainting performance. The results
with 50% observation ratio for random mask are tabulated
in Table II, while those of the deterministic mask are listed
in Table III. It is seen that the CFN-RTC attains the highest
PSNRs in the presence of impulsive noise, and better perfor-
mance than TNTV, LNOP, TTSVD, �p-TTC, and RTC-RE in
the Gaussian noise scenarios. Therefore, the average perfor-
mance of the CFN-RTC with two types of noise is superior
to all the competitors. It can be known that the capped
Frobenius norm is able to attain comparable performance to
the Frobenius norm in normal situation. On the other hand,
the runtimes of the proposed method are less than those of
�p-TTC and TRC-RE. Our approach and TRC are slower than
LNOP, TTSVD, and TNTV since both of them adopt tensor
ring decomposition. Although tensor ring factorization has a
higher complexity than the t-SVD used by LNOP, TTSVD,
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Fig. 11. Original and recovered frames for Hall. Top row corresponds to impulsive noise, while bottom row corresponds to Gaussian noise.

and TNTV, the former is able to handle higher order tensors,
while the latter can only tackle the third-order tensors.

C. Video Restoration

The second application of TC is video restoration. Since
LNOP, TTSVD, and TNTV only process the third-order ten-
sors, we adopt grayscale videos to compare the CFN-RTC
with the existing approaches. It is worth mentioning that the
CFN-RTC is able to cope with higher order tensors. The
examined dataset is YUV Video Sequences,1 and we select
two typical ones, namely, Akiyo and Hall. The dimensions
of each frame are 147 × 176. We use the first ten frames
of both the videos to assess different algorithms, which is
adopted in [39]. Thereby, the dimensions of each video are
147 × 176 × 10. The recovery performance is evaluated using
PSNR and SSIM.

Fig. 9 shows one of recovered frames of the Akiyo video
under 50% randomly missing pixels. The first row shows the
results with impulsive noise, while the second row depicts
the restored frames with Gaussian noise where Gaussian
and impulsive components are the same as the previous
settings. We see that the CFN-RTC achieves higher PSNR
and SSIM values than TRC, TNTV, LNOP, TTSVD, �p-TTC,
and RTC-RE in the presence of impulsive noise. In Gaussian
noise, the CFN-RTC and TRC attain better performance than
their competitors. However, the average performance of the
CFN-RTC is the best among seven algorithms. Fig. 10 shows
the plots of the average performance of all the frames. It is
seen that the APSNRs of the CFN-RTC are larger than those
of the other approaches.

Under the same condition as the Akiyo video, the results
of the Hall video are shown in Figs. 11 and 12. Fig. 11
shows one of restored frames, while Fig. 12 shows the plots
of the average performance of all the frames. It is seen that
the CFN-RTC outperforms its competitors in impulsive noise.
Although its performance ranks second in Gaussian noise, its
average performance is superior to the competing algorithms
in Fig. 12.

Furthermore, we investigate the recovery performance of
different algorithms under a high percentage of missing pix-
els, namely, 80% randomly missing pixels. The experimental

1http://trace.eas.asu.edu/yuv/

Fig. 12. APSNR of each frame on Hall with 50% randomly missing pixels.

Fig. 13. APSNR of each frame on Akiyo with 80% randomly missing pixels.

Fig. 14. APSNR of each frame on Hall with 80% randomly missing pixels.

results are plotted in Figs. 13 and 14. It is seen that the
suggested method still attains better performance than its
competitors under a high missing percentage. Note that the
performance of the RTC-RE severely degrades when the
missing percentage increases.
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V. CONCLUSION

In this article, we have devised an RTC algorithm using
the capped Frobenius norm and tensor ring decomposition.
The upper bound of the capped Frobenius norm is automati-
cally updated using the normalized median absolute deviation
strategy. The half-quadratic theory is used to simplify the
nonconvex problem, resulting in a tractable task such that it
becomes a convex optimization w.r.t. each individual variable.
Then the PBCD method is exploited to handle the resultant
problem, yielding an algorithm called CFN-RTC. The con-
vergence behavior of the CFN-RTC is analyzed, that is, the
objective function value is guaranteed to be convergent while
the variable sequence has a subsequence to converge to a
critical point. The experimental results on real-world images
and videos demonstrate that the CFN-RTC achieves higher
recovery accuracy than six popular algorithms in the presence
of impulsive noise. Besides, its performance is comparable to
the Frobenius-norm-based method without tweaking parameter
in Gaussian noise.

REFERENCES

[1] P. Comon, “Tensors: A brief introduction,” IEEE Signal Process. Mag.,
vol. 31, no. 3, pp. 44–53, May 2014.

[2] L. Yang, Z.-H. Huang, and X. Shi, “A fixed point iterative method for
low n-rank tensor pursuit,” IEEE Trans. Signal Process., vol. 61, no. 11,
pp. 2952–2962, Jun. 2013.

[3] Y. Liu and F. Shang, “An efficient matrix factorization method for tensor
completion,” IEEE Signal Process. Lett., vol. 20, no. 4, pp. 307–310,
Apr. 2013.

[4] E. J. Candès and Y. Plan, “Matrix completion with noise,” Proc. IEEE,
vol. 98, no. 6, pp. 925–936, Jun. 2010.

[5] Q. Liu, F. Davoine, J. Yang, Y. Cui, Z. Jin, and F. Han, “A fast
and accurate matrix completion method based on QR decomposition
and L2,1-norm minimization,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 3, pp. 803–817, Mar. 2018.

[6] L. Chen, X. Jiang, X. Liu, and Z. Zhou, “Logarithmic norm regularized
low-rank factorization for matrix and tensor completion,” IEEE Trans.
Image Process., vol. 30, pp. 3434–3449, 2021.

[7] J. A. Bengua, H. N. Phien, H. D. Tuan, and M. N. Do, “Efficient
tensor completion for color image and video recovery: Low-rank tensor
train,” IEEE Trans. Image Process., vol. 26, no. 5, pp. 2466–2479,
May 2017.

[8] T.-H. Chou, N. Michelusi, D. J. Love, and J. V. Krogmeier, “Fast
position-aided MIMO beam training via noisy tensor completion,”
IEEE J. Sel. Topics Signal Process., vol. 15, no. 3, pp. 774–788,
Apr. 2021.

[9] A. J. Tom and S. N. George, “Video completion and simultaneous
moving object detection for extreme surveillance environments,” IEEE
Signal Process. Lett., vol. 26, no. 4, pp. 577–581, Apr. 2019.

[10] I. Kajo, N. Kamel, and Y. Ruichek, “Incremental tensor-based comple-
tion method for detection of stationary foreground objects,” IEEE Trans.
Circuits Syst. Video Technol., vol. 29, no. 5, pp. 1325–1338, May 2019.

[11] I. Kajo, N. Kamel, and Y. Ruichek, “Tensor-based approach for
background-foreground separation in maritime sequences,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 11, pp. 7115–7128, Nov. 2021.

[12] Y. Chen, T. Huang, W. He, N. Yokoya, and X. Zhao, “Hyperspectral
image compressive sensing reconstruction using subspace-based nonlo-
cal tensor ring decomposition,” IEEE Trans. Image Process., vol. 29,
pp. 6813–6828, 2020.

[13] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of
products,” J. Math. Phys., vol. 6, nos. 1–4, pp. 164–189, Apr. 1927.

[14] R. Bro, “PARAFAC. Tutorial and applications,” Chemometrics Intell.
Lab. Syst., vol. 38, no. 2, pp. 149–171, Oct. 1997.

[15] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of
incomplete tensors with automatic rank determination,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1751–1763, Sep. 2015.

[16] Q. Zhao, G. Zhou, L. Zhang, A. Cichocki, and S.-I. Amari, “Bayesian
robust tensor factorization for incomplete multiway data,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 4, pp. 736–748, Apr. 2015.

[17] Y. Liu, Z. Long, H. Huang, and C. Zhu, “Low CP rank and tucker rank
tensor completion for estimating missing components in image data,”
IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 4, pp. 944–954,
Apr. 2020.

[18] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, Feb. 1966.

[19] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, “Hyperspectral computational
imaging via collaborative Tucker3 tensor decomposition,” IEEE Trans.
Circuits Syst. Video Technol., vol. 31, no. 1, pp. 98–111, Jan. 2021.

[20] J. Xue, Y. Zhao, S. Huang, W. Liao, J. C.-W. Chan, and S. G. Kong,
“Multilayer sparsity-based tensor decomposition for low-rank tensor
completion,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 11,
pp. 6916–6930, Nov. 2022.

[21] M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order
tensors,” Linear Algebra Appl., vol. 435, no. 3, pp. 641–658, Aug. 2011.

[22] W. Sun, L. Huang, H. C. So, and J. Wang, “Orthogonal tubal rank-
1 tensor pursuit for tensor completion,” Signal Process., vol. 157,
pp. 213–224, Apr. 2019.

[23] K. Gilman, D. A. Tarzanagh, and L. Balzano, “Grassmannian optimiza-
tion for online tensor completion and tracking with the t-SVD,” IEEE
Trans. Signal Process., vol. 70, pp. 2152–2167, 2022.

[24] Q. Jiang and M. Ng, “Robust low-tubal-rank tensor completion via
convex optimization,” in Proc. 28th Int. Joint Conf. Artif. Intell., (IJCAI),
Macao, China, Aug. 2019, pp. 2649–2655.

[25] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, Sep. 2011.

[26] L. Yuan, Q. Zhao, L. Gui, and J. Cao, “High-order tensor completion via
gradient-based optimization under tensor train format,” Signal Process.,
Image Commun., vol. 73, pp. 53–61, Apr. 2019.

[27] Y. Zhang, Y. Wang, Z. Han, X. Chen, and Y. Tang, “Effective tensor
completion via element-wise weighted low-rank tensor train with over-
lapping ket augmentation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 32, no. 11, pp. 7286–7300, Nov. 2022.

[28] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring
decomposition,” 2016, arXiv:1606.05535.

[29] W. Wang, V. Aggarwal, and S. Aeron, “Efficient low rank tensor ring
completion,” in Proc. ICCV, Venice, Italy, Oct. 2017, pp. 5697–5705.

[30] W. He, N. Yokoya, L. Yuan, and Q. Zhao, “Remote sensing image
reconstruction using tensor ring completion and total variation,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 8998–9009, Nov. 2019.

[31] H. Huang, Y. Liu, J. Liu, and C. Zhu, “Provable tensor ring completion,”
Signal Process., vol. 171, Jun. 2020, Art. no. 107486.

[32] Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, Q. Zhao, and T.-X. Jiang, “Fully-
connected tensor network decomposition and its application to higher-
order tensor completion,” in Proc. Conf. AAAI Artif. Intell., May 2021,
vol. 35, no. 12, pp. 11071–11078.

[33] A. M. Zoubir, V. Koivunen, E. Ollila, and M. Muma, Robust Statistics
for Signal Processing. Cambridge, U.K.: Cambridge Univ. Press, 2018.

[34] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal
by median-type noise detectors and detail-preserving regularization,”
IEEE Trans. Image Process., vol. 14, no. 10, pp. 1479–1485, Oct. 2005.

[35] A. M. Zoubir, V. Koivunen, Y. Chakhchoukh, and M. Muma, “Robust
estimation in signal processing: A tutorial-style treatment of fundamental
concepts,” IEEE Signal Process. Mag., vol. 29, no. 4, pp. 61–80,
Jul. 2012.

[36] W. Sun, X. Lin, H. C. So, L. Huang, and Q. Li, “Iteratively reweighted
tensor SVD for robust multi-dimensional harmonic retrieval,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Shanghai,
China, Mar. 2016, pp. 4318–4322.

[37] Q. Liu, X. Li, H. Cao, and Y. Wu, “From simulated to visual data:
A robust low-rank tensor completion approach using �p-regression for
outlier resistance,” IEEE Trans. Circuits Syst. Video Technol., vol. 32,
no. 6, pp. 3462–3474, Jun. 2022.

[38] S. A. Vorobyov, Y. Rong, N. D. Sidiropoulos, and A. B. Gershman,
“Robust iterative fitting of multilinear models,” IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 2678–2689, Aug. 2005.

[39] L. Chen, X. Jiang, X. Liu, and Z. Zhou, “Robust low-rank tensor
recovery via nonconvex singular value minimization,” IEEE Trans.
Image Process., vol. 29, pp. 9044–9059, 2020.

[40] X. P. Li and H. C. So, “Robust low-rank tensor completion based on
tensor ring rank via �p,� -norm,” IEEE Trans. Signal Process., vol. 69,
pp. 3685–3698, 2021.

[41] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust
subspace learning: Robust PCA, robust subspace tracking, and robust
subspace recovery,” IEEE Signal Process. Mag., vol. 35, no. 4,
pp. 32–55, Jul. 2018.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 30,2023 at 07:28:57 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: ROBUST TENSOR COMPLETION VIA CAPPED FROBENIUS NORM 13

[42] B.-Z. Li, X.-L. Zhao, J.-L. Wang, Y. Chen, T.-X. Jiang, and J. Liu,
“Tensor completion via collaborative sparse and low-rank transforms,”
IEEE Trans. Comput. Imag., vol. 7, pp. 1289–1303, 2021.

[43] H. Huang, Y. Liu, Z. Long, and C. Zhu, “Robust low-rank tensor ring
completion,” IEEE Trans. Comput. Imag., vol. 6, pp. 1117–1126, 2020.

[44] A. Blake and A. Zisserman, Visual Reconstruction. Cambridge, MA,
USA: MIT Press, 1987.

[45] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone, “Graduated non-
convexity for robust spatial perception: From non-minimal solvers to
global outlier rejection,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 1127–1134, Apr. 2020.

[46] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic
regularization,” IEEE Trans. Signal Process., vol. 4, no. 7, pp. 932–946,
Jul. 1995.

[47] H. T. Shen, Y. Zhu, W. Zheng, and X. Zhu, “Half-quadratic minimization
for unsupervised feature selection on incomplete data,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 3122–3135, Jul. 2021.

[48] F. Wen, R. Ying, P. Liu, and T.-K. Truong, “Nonconvex regularized
robust PCA using the proximal block coordinate descent algorithm,”
IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5402–5416, Oct. 2019.

[49] L. Yuan, C. Li, D. Mandic, J. Cao, and Q. Zhao, “Tensor ring decompo-
sition with rank minimization on latent space: An efficient approach for
tensor completion,” in Proc. Conf. AAAI Artif. Intell., Jan. 2019, vol. 33,
no. 1, pp. 9151–9158.

[50] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel methods
for multilinear data completion and de-noising based on tensor-SVD,”
in Proc. IEEE CVPR, Columbus, OH, USA, Jun. 2014, pp. 3842–3849.

[51] D. Qiu, M. Bai, M. K. Ng, and X. Zhang, “Robust low-rank tensor
completion via transformed tensor nuclear norm with total variation
regularization,” Neurocomputing, vol. 435, pp. 197–215, May 2021.

[52] G. Song, M. K. Ng, and X. Zhang, “Robust tensor completion using
transformed tensor singular value decomposition,” Numer. Linear Alge-
bra Appl., vol. 27, no. 3, p. e2299, Mar. 2020.

[53] Q. Yao, J. T. Kwok, T. Wang, and T.-Y. Liu, “Large-scale low-rank
matrix learning with nonconvex regularizers,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 41, no. 11, pp. 2628–2643, Nov. 2019.

[54] Q. Shi, Y.-M. Cheung, and J. Lou, “Robust tensor SVD and recov-
ery with rank estimation,” IEEE Trans. Cybern., vol. 52, no. 10,
pp. 10667–10682, Oct. 2022.

[55] C. Guillemot and O. Le Meur, “Image inpainting : Overview and recent
advances,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 127–144,
Jan. 2014.

[56] X. P. Li, M. Wang, and H. C. So, “An interpretable bi-branch neural
network for matrix completion,” Signal Process., vol. 200, Nov. 2022,
Art. no. 108640.

[57] X. P. Li, Z.-L. Shi, Q. Liu, and H. C. So, “Fast robust matrix completion
via entry-wise �0-norm minimization,” IEEE Trans. Cybern., early
access, Dec. 6, 2022, doi: 10.1109/TCYB.2022.3224070.

Xiao Peng Li received the B.Eng. degree in
electronic science and technology from Yanshan
University, Qinhuangdao, China, in 2015, and the
M.Sc. degree (Hons.) in electronic information engi-
neering and the Ph.D. degree in electrical engi-
neering from the City University of Hong Kong,
Hong Kong, SAR, China, in 2018 and 2022,
respectively.

He is currently a Post-Doctoral Fellow with the
Department of Electrical Engineering, City Univer-
sity of Hong Kong. His research interests include

optimization methods, machine learning, sparse recovery, matrix processing,
and tensor processing.

Zhi-Yong Wang was born in Henan, China.
He received the B.S. degree in mechanical engi-
neering from Zhengzhou University, Zhengzhou,
China, in 2017, and the M.S. degree in mechanical
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2020. He is currently pursuing the Ph.D.
degree with the Department of Electrical Engineer-
ing, City University of Hong Kong, Hong Kong,
SAR, China, supervised by Prof. Hing Cheung So.

His research interests include sparse recovery, rob-
ust signal processing, and low-rank approximation.

Zhang-Lei Shi received the Ph.D. degree from
the Department of Electrical Engineering, City Uni-
versity of Hong Kong, Hong Kong, SAR, China,
in 2021.

He is currently a Lecturer with the Col-
lege of Science, China University of Petroleum
(East China), Qingdao, China. His current research
interests include neural networks and machine
learning.

Hing Cheung So (Fellow, IEEE) was born in
Hong Kong. He received the B.Eng. degree in
electronic engineering from the City University of
Hong Kong, Hong Kong, SAR, China, 1990, and
the Ph.D. degree in electronic engineering from The
Chinese University of Hong Kong, Hong Kong,
in 1995.

From 1990 to 1991, he was an Electronic Engi-
neer with the Research and Development Divi-
sion, Everex Systems Engineering Ltd., Hong Kong.
From 1995 to 1996, he was a Post-Doctoral Fellow

with The Chinese University of Hong Kong. From 1996 to 1999, he was
a Research Assistant Professor with the Department of Electronic Engi-
neering, City University of Hong Kong, where he is currently a Professor.
His research interests include detection and estimation, multidimensional
harmonic retrieval, robust signal processing, and sparse approximation.

Dr. So has been on the editorial boards of IEEE Signal Processing Magazine
(2014–2017), IEEE TRANSACTIONS ON SIGNAL PROCESSING (2010–2014),
Signal Processing (2010), and Digital Signal Processing (2011). He was also
a Lead Guest Editor for IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL

PROCESSING, Special Issue on “Advances in Time/Frequency Modulated
Array Signal Processing” in 2017.

Nicholas D. Sidiropoulos (Fellow, IEEE) received
the Diploma degree in electrical engineering from
the Aristotle University of Thessaloniki, Thessa-
loniki, Greece, in 1988, and the M.S. and Ph.D.
degrees in electrical engineering from the University
of Maryland at College Park, College Park, MD,
USA, in 1990 and 1992, respectively.

He is currently a Louis T. Rader Professor at the
University of Virginia, Charlottesville, VA, USA.
He has previously served on the faculty of the
University of Minnesota, Minneapolis, MN, USA,

and the Technical University of Crete, Kounoupidiana, Greece. His research
interests are in signal processing, communications, optimization, and tensor
decomposition with applications in machine learning and communications.

Dr. Sidiropoulos is a fellow of EURASIP in 2014. He received the
NSF/CAREER Award in 1998, the IEEE Signal Processing Society (SPS)
Best Paper Award in 2001, 2007, 2011, and 2023, and the IEEE SPS Donald
G. Fink Overview Paper Award in 2023. He received the IEEE Signal
Processing Society Meritorious Service Award in 2010, the Distinguished
Alumni Award of the Department of ECE, University of Maryland in 2013,
the EURASIP Technical Achievement Award in 2022, and the IEEE SPS
Claude Shannon–Harry Nyquist Technical Achievement Award in 2023.
He served as the IEEE SPS Distinguished Lecturer (2008–2009), as the Vice
President-Membership of IEEE SPS (2017–2019), and as the Chair for the
SPS IEEE Fellow Evaluation Committee (2020–2021).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on August 30,2023 at 07:28:57 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCYB.2022.3224070


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


