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Sparse Index Tracking With K-Sparsity
or e-Deviation Constraint via
{o-Norm Minimization

Xiao Peng Li™, Zhang-Lei Shi

Abstract— Sparse index tracking, as one of the passive invest-
ment strategies, is to track a benchmark financial index via
constructing a portfolio with a few assets in a market index.
It can be considered as parameter learning in an adaptive system,
in which we periodically update the selected assets and their
investment percentages based on the sliding window approach.
However, many existing algorithms for sparse index tracking
cannot explicitly and directly control the number of assets or the
tracking error. This article formulates sparse index tracking as
two constrained optimization problems and then proposes two
algorithms, namely, nonnegative orthogonal matching pursuit
with projected gradient descent (NNOMP-PGD) and alternating
direction method of multipliers for £y-norm (ADMM-{,). The
NNOMP-PGD aims at minimizing the tracking error subject to
the number of selected assets less than or equal to a predefined
number. With the NNOMP-PGD, investors can directly and
explicitly control the number of selected assets. The ADMM-{,
aims at minimizing the number of selected assets subject to the
tracking error that is upper bounded by a preset threshold.
It can directly and explicitly control the tracking error. The
convergence of the two proposed algorithms is also presented.
With our algorithms, investors can explicitly and directly control
the number of selected assets or the tracking error of the resultant
portfolio. In addition, numerical experiments demonstrate that
the proposed algorithms outperform the existing approaches.

Index Terms— Alternating direction method of multipliers
(ADMM), index tracking, nonnegative orthogonal matching
pursuit (NNOMP), projected gradient descent (PGD), sparse
recovery.

I. INTRODUCTION

NVESTMENT refers to selecting assets and distributing

money over the selected assets. In general, there are
two investment strategies, namely, active and passive [1], [2].
An active strategy seeks to beat the market performance, such
as Russell 2000 and S&P 500 indexes, via actively buying and
selling assets. In the last decade, some learning system-based
active strategies [3], [4] were developed. For example, we can
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Fig. 1. Density functions of returns in active and passive investment
strategies. The horizontal axis refers to the return, while the vertical axis refers
to density function values. Usually, the variances (risk) of active strategies are
higher than those of passive strategies.

use time series forecasting methods to perform prediction
[3], [4]. Active strategies might help investors to earn a
higher profit than the market return. Concomitantly, the risk
of active strategies is high. In addition, the management and
administration fees of an active portfolio are high since fund
managers and/or experienced investors are involved. In con-
trast, a passive strategy tends to replicate a benchmark market
index. Hence, it is able to obtain market returns at low risk.
The management fee or overhead of a passive fund is generally
low.

It was reported [5] that most of the active funds are inferior
to the market in the long term. Fig. 1 shows the return
distributions of two kinds of strategies. The horizontal axis
refers to the return, while the vertical axis refers to the
density function value of the return. The center point in the
horizontal axis is the market return. Usually, the returns of
active strategies are with higher variance. Therefore, more
and more investors prefer the passive strategy, including those
holding stable funds and conservative funds.

Recently, a number of neural network-based works [6]-[8]
were proposed for finance or asset management. For example,
in [6], a radial basis function (RBF) approach was suggested
for market trend representations. This approach improves the
performance in price prediction for portfolio selection. In [7],
several analog neural network methods were proposed for
designing an investment portfolio. In addition, a deep neural
network approach [8] was proposed to handle trading decisions
for improving rewards in an unknown market environment.
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Fig. 2. Moving window concept in sparse index tracking.

Index tracking is one of the passive investment techniques
for managing assets. It aims at tracking the performance of
a market index by selecting some assets and determining the
investment percentages of the selected assets. Of course, a per-
fect index tracking [9]-[11] is a full replication of a market
index, which straightforwardly purchases all the assets of the
target index with their true construction weights. Nevertheless,
there are several drawbacks. First, high costs are caused by
operating all assets when the index contains numerous assets.
For instance, to replicate the Russell 2000 index, it is necessary
to handle all the 2000 stocks. This implies that numerous
transaction operations and fees are required, especially to
track a portfolio with a high rebalancing frequency. Second,
a market index might contain some illiquid stocks that will be
difficult to sell.

Hence, a better approach is to select some important assets
to construct a portfolio such that the performance of the
portfolio closely fits that of the market index. This approach
is called sparse index tracking. Formally speaking, given N
assets in a market index, we would like to find a portfolio
or saying a portfolio weight vector w € RY such that the
performance of the portfolio fits that of the market index,
where 0 < w, < 1 (positive constraint) and Zfl\':l w, =1
(sum-to-one constraint). The nth portfolio weight w, is the
investment percentage on the nth asset. Since we would like to
select dominant assets, the portfolio vector should be a sparse
vector, i.e., there are a few nonzero elements in w.

Regression [12]-[15] is a classical problem in neural net-
works. Sparse index tracking is a special form of regression
problems because there are some constraints in the problem.
In order to make the resultant portfolio to be adaptive to
the market, index tracking should be considered as parameter
learning for an adaptive system. As shown in Fig. 2, we select
some important assets and estimate their investment percent-
ages based on the data of the last training window. Afterward,
we use the estimated portfolio to run the investment for an
operation period. It should be noticed that there is overlapping
between training windows, but there is no overlapping between
operation windows.

In addition, sparse index tracking can be considered as a
special form of feature selection problems [16]-[19], in which
we choose a subset of relevant features for model construction.
Inspired by feature selection, several sparse index tracking
algorithms were proposed in [20]-[26]. In practice, many
exchange-traded funds (ETFs) utilize the sparse strategy to
track the market [27]-[29]. A trivial portfolio design is to
keep only the large-weighted assets of the market index and
exclude all remaining assets. However, its objective is not to
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minimize the tracking error. Alternatively, we can select assets
from the whole assets based on the statistical theory. In [20]
and [30], similarities between assets and the market index are
first computed. Afterward, the assets with large similarities are
selected. Nevertheless, the objective of this procedure is also
not to minimize the tracking error.

A relatively new framework is to utilize sparse recovery the-
ory [31], [32] to solve the sparse index tracking problem [9],
[22], [33]. As shown in Fig. 2, in this idea, based on the data of
a training window, we construct a sparse portfolio. Afterward,
we use the constructed portfolio to run the investment for
certain duration. In this framework, constructing the portfolio
is formulated as an optimization problem [34], [35] that
minimizes the £;-norm of tracking error and the {y-norm of
the portfolio weight vector w, subject to the two constraints,
which are nonnegativity and sum-to-one. Here, the {p-norm
is the sparsity measurement of the constructed portfolio.
Since {p-norm minimization [32] is NP-hard, some works [9]
proposed to approximate it by a continuous and differentiable
function. They handle the resultant nonconvex formulation
with the majorization—minimization (MM) method [36], [37].
However, in those works, investors cannot directly control the
sparsity level or the tracking error.

The ¢;-norm, as a surrogate function of the {y-norm
[38], [39], can be used to simplify the formulation of sparse
index tracking. In [23], the least absolute shrinkage and selec-
tion operator (LASSO) [40], [41] is utilized to solve sparse
index tracking. Besides, Lai et al. [42] leveraged the £;-norm
and then converted the sum-to-one constrained problem into
an unconstrained augmented Lagrangian optimization. Apart
from having the same difficulty of controlling sparsity, its
worst case risk cannot be controlled because negative weights
are allowed. It should be noticed that investment funds are not
allowed to perform the short-sell operation, i.e., negative w,’s.

Since sum-to-one and nonnegativity constraints make the
¢1-norm of the portfolio weight vector to be a constant, these
two constraints cannot be involved in the standard LASSO for
sparse index tracking. To handle this issue, some researchers
suggested the reweighted £;-norm concept to make these two
constraints effective in the LASSO framework [24], [25].
Nevertheless, we need to face the challenge of properly select-
ing the regularization parameters. In [26], a robust algorithm
is proposed to handle outliers. It replaces the {,-norm by
composite quantile regression [43] to minimize the tracking
error.

Many existing algorithms follow the conventional regular-
ization approach. They put the two objectives, which are track-
ing error and sparsity level, into a single objective function.
However, this formulation may have the following issues.

1) In the conventional tasks, such as feature extraction
and sparse recovery, we can focus on achieving the
minimum test set error with an appropriate regularization
parameter, that is, we run the algorithm a number of
times with different regularization parameter values and
obtain a number of models with different sparsity levels.
Afterward, we select the model based on the test set.
For sparsity index tracking, the above approach does not
work. It is because the portfolio with minimum test set
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error or training set error is a trivial solution, which is
the full replication of the market index.

2) When we put the two objectives, tracking error and
sparsity level, into a single objective function, we need
to tune the regularization parameter(s) based on some
trial-and-error methods such that the sparsity level
or the tracking error of the resultant portfolio meets
the target levels. In other words, investors cannot
directly and explicitly control the sparsity or track-
ing error levels of the resultant portfolio. To obtain
a desired sparsity level or tracking error level, for
the aforementioned algorithms, we need to carefully
tune the parameters. From the user’s point of view,
an investor may like to directly define the number of
assets in the resultant portfolio or the investor may
like to directly define the fitting error in the resultant
portfolio.

3) Suppose that we use a modified form of the £yp-norm
in the regularization term. Even the resultant portfolio
reaches the desired sparsity level, and the tracking error
is still not optimized. It is because the objective, being
optimized, is not the tracking error at the desired spar-
sity level. Instead, the objective, being optimized, is a
combination of the tracking error and the regularization
term.

The controllability on fitting error and sparsity level is usu-
ally considered in many machine learning and signal process-
ing [44], [45] applications, especially for feature selection.
To the best of our knowledge, there are a few works on
sparse index tracking with the controllability on fitting error
and sparsity level.

This article focuses on addressing sparse index tracking with
direct and explicit control on sparsity level or tracking error
level. For sparsity control, we formulate the index tracking
problem as an optimization problem that minimizes the track-
ing error, subject to the number of selected assets less than or
equal to a preset threshold. We decompose the whole problem
into two consecutive subproblems, namely, asset selection
and capital allocation. In the former subproblem, we use the
nonnegative orthogonal matching pursuit (NNOMP) concept
[46], [47] to choose a given number of assets in the index.
After determining the involved assets, we allocate the weights
for the selected assets based on the projected gradient
descent (PGD) [48], [49]. We call the proposed algorithm as
NNOMP-PGD.

For tracking error control, we formulate the index track-
ing problem as an optimization problem that minimizes the
number of assets, subject to the tracking error less than or
equal to a preset threshold. In this way, we can explicitly
limit the tracking error in the resultant portfolio. Based
on the alternating direction method of multipliers (ADMM)
[50]-[52] concept, we derive an algorithm, called ADMM for
{p-norm (ADMM-{y), to solve the problem. The ADMM-{,
algorithm is an iterative algorithm. Each iteration contains
three alternating optimization steps. For the first step, even
though there is an {yp-norm term in the objective function
of this step, we develop a closed-form solution for this
step. In addition, the convergence property of the ADMM-{

algorithm is presented. Compared with existing works, our
main contributions are summarized as follows.

1) In the formulation of the NNOMP-PGD algorithm, the
objective is to minimize the tracking error subject to
the number of the selected assets less than or equal
to a predefined value. Hence, investors can directly
and explicitly control the sparsity level of the resultant
portfolio.

2) In the formulation of the ADMM-{, algorithm, the
objective is to minimize the number of the selected
assets subject to the tracking error less than or equal
to a predefined value. Hence, investors can directly
and explicitly control the tracking error of the resultant
portfolio.

3) We provide the convergence analysis of the ADMM-{,.
Each iteration of ADMM-{, contains three alternating
updates. One of them involves the {p-norm minimization
update. We derive a global closed-form solution for
this update.

4) The proposed algorithms exhibit lower tracking error
than the existing algorithms based on three real-world
datasets, namely, Russell 2000, S&P 500, and NASDAQ
100. Compared with ADMM-{, the NNOMP-PGD is
suitable for investors who intend to purchase a fixed
number of assets. On the other hand, for investors who
are more concerned about tracking error, the ADMM-{
is more preferable.

This article is organized as follows. Related works and
various formulations of sparse index tracking are reviewed
in Section II. In Section III, two algorithms are derived.
Convergence and computational complexity are also presented.
Numerical results are then presented in Section IV. Finally,
conclusions are drawn in Section V.

In this article, scalars, vectors, and matrices are repre-
sented by italic, bold lower case, and bold upper case letters,
respectively. The notation w > 0 means that all entries of w
are nonnegative. Transpose operator is denoted by (-)7.

II. OVERVIEW AND RELATED WORKS

Consider a market index with N assets. Let r € R?" be the
daily returns of the market index over the last D, trading days.
Let A =[a;---ay] € RPN be the daily returns of N assets
in these trading days, where a,, refers to daily returns of the
nth asset. In addition, w = [w; - - - wy]7 € RY is the portfolio
weight vector, where w,, is the investment percentage assigned
to the nth asset.

The replicating performance J(w) of a portfolio is

1
J () = 5 llAw —rl3. (1)

The sparse index tracking is a constrained regression problem,
which is given by
inJ () =+ |Aw —r[}
min (w)_B w—rl;
st.w>0, w'l=1, and w is sparse. 2)

Its task is to search for a w that fits » under three constraints.
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First, the weights must be nonnegative. This means that
short selling is not allowed because it has a very high potential
risk. Second, the sum of investment percentages must be equal
to one. Finally, most of the weights should be zero.

The sparse index tracking problem is different from conven-
tional sparse recovery problems or feature extraction problems.
First, there are two constraints, sum-to-one constraint and
nonnegative constraint, in sparse index tracking. They usually
do not appear simultaneously in conventional sparse recovery
problems and feature extraction problems.

Second, in sparse index tracking, there are two objectives:
tracking error and sparsity level. We cannot focus on the
tracking error only. It is because the solution for minimizing
the training set tracking error or test set tracking error is trivial.
It is because we can fully replicate the market index. This
property does not appear in other sparse recovery problems.

One approach for solving (2) is to decompose the whole
problem into two consecutive subproblems, namely, asset
selection and capital allocation. In [20], the asset selection step
computes the correlation factors [53] f,’s, which is given by

Cov(a,,r)

b= Var(r)

where Cov(a,,r) denotes the covariance of a, and r and
Var(r) denotes the variance of r. Correlation factor f,
measures the similarity between the nth asset and the market
index. When f, is large, the trend of the nth asset is similar
to the market index. After computing all f,’s, a set of assets
with large values of f, is selected. In capital allocation, the
investment percentages of the selected assets are optimized
by the genetic algorithm (GA). Nevertheless, in practice,
the GA is not able to guarantee the global minimization of
fitting error. Moreover, the mentioned stock selection process
may not attain the most suitable assets to represent the target
index because it considers the similarity of trend rather than
the minimum of fitting error.

When the tracking error and sparsity are combined together,
the sparse index tracking problem [22] can be formulated as

3)

1
min BHAw —rl3 + Allwll
st.w>0 and w'l=1 4)

where ||w]op is the number of nonzero elements in w. It is
used to control the sparsity constraint. Here, 4 > 0 is a regu-
larization parameter to trade off fitting error and the number of
assets. Since minimizing ||w||o is NP-hard, Benidis et al. [22]
employed a continuous and differentiable function to approx-
imate |w]o and then used MM to deal with the resultant
formulation. However, in (4), the sparsity of the portfolio is
very sensitive to 4. In practice, tuning A to achieve the desired
number of assets is time-consuming.

In conventional sparse recovery algorithms, the £;-norm
is considered as an effective approximation for the {y-norm.
Hence, in [23], the sparse index tracking problem was formu-
lated as

1
min —||Aw —rl5 + Alwll;

st.w'l=1 3)
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where (5) is the well-known LASSO formulation. In (5), there
is no nonnegativity constraint. Therefore, negative weights
may appear, which will lead to the possibility of short selling.

It is worth pointing out that if the sum-to-one and nonneg-
ativity constraints of w are involved in (5), then |jw]|[; in (5)
is a constant and hence becomes irrelevant. To deal with this
issue, Shu et al. [24] utilized the reweighted ¢;-norm [54] to
modify (6) as

1 A
min —[[Aw — 7[5 + 4 o 0|, + L2 lwlly + 23w — ll;
stw>=0 and w'l=1 (6)

where v and @ € R" are reweighted and the portfolio weight
vectors in previous time period vectors, respectively. Here,
A2|lw |2 is able to solve the collinear problem in LASSO [55],
and A3||w — @] is to minimize the turnover fee, which is able
to limit the number of transactions. However, the work in [24]
does not provide the scheme to tune the parameters, namely,
A1, A2, and A3. Hence, we face the challenge of properly
selecting them.

It is well known that the £,-norm is highly sensitive to out-
liers, which may correspond to extreme returns in volatile peri-
ods. To achieve robustness and improve performance in such
conditions, in [26], the composite quantile regression concept
is adopted, in which the optimization problem becomes

M N
w,b:n[};ill.l..bM] Z Zp‘l',,, (asz - bm - yl) + /11 HI)TH)H1

m=1 i=1

st.w>0 and w'l1=1 (7

where p, (x) = 7, max(x,0) — (1 — 7,,) max(—x,0) and
pr, (x)’s is called check loss functions. Parameter z,, is set as
tw = m/(M 4+ 1) and b,, is the 7,, quantile of the random
error. In this approach, we still need to carefully set the
regularization parameter and the parameter M.

Before we present our algorithms, we would like to clarify
several issues first. The formulations from (4) to (7) follow
the regularization approach, in which the objective function is
given by

objective = tracking error + regularizer. ®)

1) One may think that we can tune regularization para-
meter(s) such that the resultant portfolio achieves the
minimum test set tracking error. In fact, for index
tracking, this tuning strategy is not appropriate. It is
because the solution with the minimum test set tracking
error is the full replication of the original market index.

2) The formulation of (8) does not allow us to directly
and explicitly control the sparsity or the tracking error.
However, the controllability on fitting error and sparsity
level is usually considered in many machine learning
and signal processing applications [44], [45], especially
for feature selection.

3) Even we can afford the tuning process to tune the
sparsity level to reach our desired level, the objective
of the solution may not correspond to the tracking error
reduction. Suppose that we consider a regularization
term, which is a modified {;-norm term or £,-norm
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term. After we tune the regularization parameter(s) such
that the sparsity level of the solution meets the desired
sparsity level, this solution is obtained by optimizing
the objective in (8). The objective value at the desired
sparsity level is a combination of tracking error and
regularization value, rather than the tracking error only.
Similarly, suppose that we tune the regularization para-
meter(s) such that the training tracking error of the
solution meets the desired error level. This solution is
obtained by optimizing the objective in (8) rather than
the sparsity level.

4) As there are two objectives in the sparse index tracking,
more practical requirements are to have a reasonable
tracking error and a reasonable sparsity level. Instead
of using the loose word ‘“reasonable,” this article can
consider two cases. The first one is to minimize the
tracking error subject to the number of selected assets
less than or equal to a predefined value. The second
case is to minimize the number of selected assets subject
to the tracking error less than or equal to a predefined
value.

III. PROPOSED ALGORITHMS

In this section, we propose two algorithms to tackle the
problem stated in (2).

A. Explicitly Control Number of Selected Assets

This section derives our NNOMP-PGD algorithm. In the
existing methods, they control the number of selected assets
for constructing a sparse portfolio via tuning the regularization
parameter, which is difficult to attain the desired number in
practice.

To explicitly control the sparsity, we add an {y-norm con-
straint and reformulate (2) as

min |Aw —r|3
w
stw>0, w'l=1 and |w|, <K )

where K is the investor’s preference on the number of assets
in the resultant portfolio. In (9), we drop the scalar 1/D for
presentation simplicity because it does not have the effect on
the solution.

Since there are three constraints in (9) and one of them
involves the £p-norm, it is challenging to solve (9). We sep-
arate (9) into two subproblems, namely, asset selection and
capital allocation. In asset selection, we solve the problem,
which is given by

min [|Aw —r||3
w

st.w >0 and |wl|y=<K. (10)

This is a nonnegative sparse recovery problem. We suggest to
use the NNOMP for handling (10).

Compared with the correlation approach in [20], our for-
mulation selects better assets since (10) minimizes the fitting
error, while the correlation approach aims at searching assets
with similar trend.

After determining the K assets, one may think that we can
use the solution of (10) to obtain a portfolio by normalizing
the solution. However, this strategy could not ensure that the
normalized portfolio is optimal for the selected assets. Given
the selected assets, the best way is to optimize the investment
percentages again.

After determining the K assets, we remove the (N — K)
columns in A corresponding to the unselected items to form
A € RP>K and define a reduced weight vector w € RX for
the selected assets. Afterward, we solve the capital allocation
problem, which is given by

. ~ o~ 2
min 4@ - r|}

st. >0, and ®'1=1.

(1)

In (11), the aim is to optimize the weights for the selected
assets such that the tracking error is minimized.

In (11), the objective function and constraints are convex.
It can be solved by various methods. Based on the penalty
method in convex optimization [56], [57], this article con-
verts (11) into a unconstrained problem, which is given by
min 7 (@) = |&@ —r[ + 5 (@) 1-1)"

w>0

12)

In (12), we choose a simple quadratic penalty function and
parameter A is to control the fitness of the sum-to-one con-
straint. In our study, “4 around 10” is good enough.

The problem stated in (12) is a convex optimization prob-
lem, and hence, it can be effectively solved by the PGD
concept. Its iterative equation is given by

> = — uVf (@)

~i+l sl |2
w't = arg%lil(}”w o'

(13a)
(13b)

where V f (') = 24" A" — r) + A(w)"1 — 1) and u >
0 is the step size. Equation (13a) is the standard gradient
descent (GD) process, and Equation (13b) can be consid-
ered as a projection operation. The projection solution is
w'*! = P(®"), which is given by

0, ifo) <0

o, if 9 >0

no

P(oy) =

n

(14)
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where 9! is the nth entry of »'. Fig. 3 shows the projection
operation. After determining o’ via (13a), the projection finds
a point closest to o’ in the feasible region.

Algorithm 1 summarizes the procedure of the proposed
NNOMP-PGD algorithm. The first iteration loop is to han-
dle the asset selection, while the second one is to tackle
the capital allocation. In Algorithm 1, Step 6 is able to
greatly reduce the computational complexity in PGD due to
K <« N. In our study, we stop the algorithm when the
condition ||@' — @'~'|| < 1077 is met.

Algorithm 1 Our NNOMP-PGD
Input: A, r, K and p.
Initialize: y° =r, w =0, index set Z° =@ and A;o = @
for k=1,2,...,K do
1) iy = argmax, g7+
Stop if (a;,)Ty*"! < 0.
2) IF =TT Uy
3) Azv = [Ap1,a;,]
4) wr = (AL, Az) 'ALy
5) y" =r — AIkXIk
end for B
6) compute A = A(Z%) and @° = wx
forr=1,2,...do
7) 5t—l — E)t—l _ ,qu(l’lv)l_l)

(a,)"y*!
llax 2

) w =P
Stop if stopping criterion is met.
end for

Output: w(Z¥) = w'

B. Explicitly Control Fitting Error

This section develops our ADMM-{, algorithm, which can
directly limit the fitting error. In the algorithm, the sparse index
tracking is formulated as

min [[wllo
w

st.w>0, w'l=1, and |Aw —r||§ <e (15

where ¢ > 0 is a user-defined tolerance parameter, which
indicates the maximum affordable deviation from the target
index performance. Since {p-norm minimization is subject to
three conditions, (15) is an intractable problem. We suggest to
use the decoupling concept to handle it. With the decoupling
concept, (15) becomes

min [|w|ly + I(z)
w,z

st.w=z (16)

where I(z) is an indicator function [58], [59], which is used
to report whether z is in the set

C={zllAz—rl; <e,2"1 =1,z =0}

or not. If z € C, then I(z) = 0; otherwise, I(z) = +oc.
Since it is difficult to directly utilize I(z) to deal with (16),
we approximate [(z) with an approximation indicator function
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g(z) given by

g@) = M(max{O, |Az —r||% _ E}2 " (ZTI - 1)2

N
+ > max{0, —zn}z). A7)

n=0

It can be found that if z € C, then g(z) = 0; otherwise,
g(z) > 0.1If 2; is large enough, then g(z) is equivalent to I(z).
From our experience, A; around 10* is good enough.

Based on (16) and (17), the augmented Lagrangian is
established as follows:

7
Lw.z,y) = vl +8@) +7" (0 —2) + llw ~zl}
(18)

where y € RY contains Lagrange multipliers and the last term
is the augmented term, which helps convexifying the original
problem and the choice of 1, > 0 is quite flexible as long as
its value is sufficiently large. From our experience, 4, around
10* is good enough.

Adopting the ADMM idea, we update w, z, and p in an
alternating and iterative manner, which is given by

w' =argminL(w,z'"", ") (192)
w

Z' = argmin L(w',z,7""") (19b)
zeC

p ="+ ' -2 (19¢)

that is, this iteration process is to compute a saddle point
of (18). In (19), (w',z',y") denotes the result of the tth iter-
ation. The details of solving (19a)—(19c) are given as follows.
Update of w: Ignoring the constant terms in (19a), the
update of (19a) becomes
t : A2 i—1]2
w' = argmin ||w||0+7||w—b I (20)
where b'~! = z/=! — y'=1/),. Unlike the familiar £y-norm
minimization in [60] and [61], each component in w in (20) is
independent of each other. Therefore, (20) can be decomposed
into N scalar subproblems, which is given by
2

A
min &(w,) + ?2 (w, — b7 (21)

w,
where b'~! denotes the nth element of b'~!) and §(w,) is an
indicator function. If w, = 0, then J6(w,) = 0; otherwise,
o(w,) = 1. The closed-form solution for (20) is then given by

—1 . —1 2
L) = b7t if B |z\/;2 )

w =T
0, otherwise

where T,,/2(b'") is a hard-thresholding operator. When b'~!
is less than 4/(2/4,), we set it to zero; otherwise, we keep its
original value. The derivation of the closed-form solution is
given in Appendix A.
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Update of z: Since the {y-norm term in (19b) is independent
of z, the update of z can be simplified as

2
1

A2

A
7' = argmin—sz’ —z+—y"
z 2 2

+/11((max{0, 1Az —rl2—€e})’ + "1 -1)°

(23)

N
+ > (max{o, —zn}f)
n=1

where all terms are convex and the feasible region is also
convex, and hence, (23) corresponds to a convex optimization.
GD [62] can be employed to tackle it. The gradient with
respect to z is

V.L(w',z,7"7")

1
— —iz(u)t 74 _ytl)
A2

+2zl(5(0, 1Az — 1% — €) (1 Az — 7|13 — €)AT (Az — r)

+ (z’Tl - 1)1 + min{0, z}) 24)
where  min{0,z} is performed -elementwise and
90, |Az —r|3 —€) is

0(0, Az —r[3 —€) = {(1), Li}i:;;;”%—e >0 25
Then, the update of z becomes
zl =zl—l —uVZE(w’,zl_l,y’_l) (26)

where u > 0 is the step size. Note that superscript / denotes
the iteration number of the GD process, where 7=0 = 7.
In theory, z' = z/ when V,L(w',z',y"~") =0.

Update of y : For (19¢), the update is quite straightforward.

Our proposed ADMM-{; is summarized in Algorithm 2.
It is worth noting that the ADMM-{, algorithm contains
two layers of iterations. The outer iteration is to update
(w',z',y") via ADMM, while the inner iteration is optimize
z! via GD. In our implementation, the inner and outer stopping
conditions are ||z —z/~'||» < 1077 and ||w’ —w'~ ||, < 1077,
respectively.

C. Convergence Analysis

For our NNOMP-PGD, it consists of two procedures: the
convergence of the NNOMP procedure is analyzed in [46]
and [63] and the convergence of the PGD procedure is
provided in [49] and [64]. Therefore, the convergence of our
NNOMP-PGD is guaranteed because both NNOMP and PGD
converge.

We now focus on analyzing the convergence of our
ADMM-{¢y. The flow of our analysis is similar to that of the
nonconvex ADMM convergence analysis [65].

First, in our ADMM-{;, we have the following two
properties.

P1: For each 1, there exists ¢ > 0 such that

E(w’,z’,y’) _ E(w’_',z’_l,y’_l) < _THZI e ”z

P2: L(w',z',p") is lower bounded.

Algorithm 2 Our ADMM-¢
Input: A, r, u, € A; and 4,
Initialize: y° =0 and z° computed by NNOMP
forr =1,2,...do
1) btfl — ztfl _ ytfl//lz
2) w' =T, B
3) ZI:O — ztfl
for/=1,2,...do
4) zl =zl—1 _ ,quﬁ(w’,z, yt—l)
Stop if stopping criterion is met.
end for
52 =2
6) }’l — yt—l +/12(w’ _zt)
Stop if stopping criterion is met.
end for
Output: w'

Proof: The proof of P1 and P2 is given in Appendix B.
From P1 and P2, we have Theorem 1.
Theorem 1: Since the ADMM-{, satisfies P1 and P2,
L', z',p") converges.

Proof: P1 indicates that L(w',z',y') is monoton-
ically nonincreasing. From P2, L(w',z',y') is lower
bounded, and thus, the convergence of L(w',z',y') is
guaranteed.

Furthermore, the dynamic behavior of the sequence
{w', z', y'} is provided in Theorem 2.
Theorem 2: Based on Theorem 1, ||w’ —w"'||§ — 0, ||z —
Z7Y3 > 0,and ||y —y"7 !5 > 0, as t — oo.
Proof: The proof is given in Appendix C.

D. Complexity Analysis

In our NNOMP-PGD, the computational complexities of
Steps 1 and 4 are O(MN) and O(K?>M), respectively.
Since K « N in sparse index tracking and it is repeated
at most K times, the overall complexity of NNOMP is
O(KMN).

For PGD, the computational complexity is dominated
by calculating V f (') whose complexity is OQ2KM).
Hence, the computational complexity of PGD is OQT K M),
where T is the maximum iteration number. In general,
2T > N, and therefore, NNOMP-PGD has the complexity of
OQTKM).

For our ADMM-{,, the computational complexity is dom-
inated by V,L(w’,z,y'™"), which corresponds to O(MN).
Hence, the overall complexity of ADMM-{, is O(TLMN),
where T and L are the maximum iteration numbers of inner
and outer loops, respectively.

1V. EXPERIMENTS
A. Datasets and Settings

Our experiments consider three real-world datasets, namely,
Russell 2000, S&P 500, and NASDAQ 100. There are com-
monly used datasets in sparse index tracking [7], [22], [66].
According to the common practice [7], [22], [66], the stocks
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TABLE I
DATASET INFORMATION

Dataset Period Total Day No. Diain = Dop
Russell 2000  03/08/2015-02/06/2020 1200 200 100
S&P 500 03/08/2015-02/06 /2020 1200 200 100
NASDAQ100 03/08/2015-02/06/2020 1200 200 100

that do not cover the whole period are excluded. Therefore,
the used datasets extracted from Russell 2000, S&P 500, and
NASDAQ 100 contain 1544, 437, and 80 stocks, respectively.
The details of the datasets are listed in Table I, which contains
the time period of dataset, total days D, training days Dyin,
and testing days Dop.

We adopt the moving window scheme [22], shown in Fig. 2,
to test all algorithms. This scheme has several advantages.
First, it is close to the practical situation, in which the
portfolio is run for a duration and then is rebalanced. With
the rebalance, the portfolio can adopt to the change in the
market environment. Second, it is able to reduce the impact
of data characteristics, namely, stable, recessionary, and bubbly
markets.

We begin with the first window covering from the first day
to the first Dygin + Dop days. The first Dy, day is utilized
to train w, and then, the remaining D, days are utilized to
evaluate the performance. Then, we roll the window D, days
to get the second window. In a similar manner, a new w is
obtained and is tested based on the second operation window.
It can be seen that the number of days for training is D — Dy,
while the number of days for testing is D — Dyyin-

Based on the moving window method, the magnitude of
the daily tracking error (MDTE) [22] is utilized to evaluate
the estimation performance, which is defined as follows:

D—Dhain

— ! P— T i
MDTE_m ; ”r.] X w.IHZ

27)

where r; is the return of the market index in the jth day in the
testing days, x; is the returns of the stocks in the jth day in
the testing days, and w ;th is the portfolio used in the jth day
in the testing days. The MDTE value is presented in basis
points (bps) where 1 pbs is equivalent to 107,

B. Convergence Behavior

In this section, we verify Theorems 1 and 2 using empirical
results based on the S&P 500 and Russell 2000 datasets. Fig. 4
shows the convergence behavior of L(w’,z',y"). We can see
that the value of L(w',z',y") decreases with the number of
iterations and converges within around 80 iterations.

Fig. 5 shows the dynamics of the estimated weights. It can
be seen that there are no big changes in the estimated weights
after around 80 iterations. Thereby, Theorem 2 is verified.
In addition, all the estimated weights become greater than or
equal to zero around 80 iterations.

C. Comparison With Existing Methods

In this section, seven algorithms are considered. The
NNOMP-PGD and ADMM-{, are our proposed algorithms.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
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Fig. 4. Convergence of L(w',z',y") in ADMM-{y. (a) S&P 500. (b) Russell
2000.

weight values
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Fig. 5. Dynamics of the weight values in ADMM-{y. (a) S&P 500
(K = 40). (b) S&P 500 (K = 60). (c) Russell 2000 (K = 60). (d) Russell
2000 (K = 80).

Five existing algorithms are included for comparison.
They are specialized linear approximation for index track-
ing (SLAIT) [22], accelerated SLAIT (ASLAIT) [22],
IT-Aenet [24], LASSO [23], and a modified nonsparse (MNS)
algorithm [67]. In the MNS, we first construct a nonsparse
portfolio via the CVX solver based on (2). We then select the
assets with the largest weights and apply the normalization.
Note that we cannot use the solution of the CVX solver as the
comparison algorithm because this nonsparse solution should
be nearly identical to the full replication concept.

Figs. 6-8 compare the MDTE performances of various
algorithms. Those figures show MDTE versus sparsity K of
the portfolio.

Since the SLAIT, ASLAIT, and LASSO algorithms cannot
directly control the sparsity value K and the training set fitting
error, we tune their regularization parameter values such that
the sparsity values of the resultant portfolios meet the target
values.

For the IT-Aenet algorithm, it does not have an efficient
tuning mechanism and we use the recommendation values
in [24], and thus, we only have a point for IT-Aenet in the
figures. Our ADMM-{ is able to directly control the fitting
error of the resultant portfolio, but it cannot directly control
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Fig. 6. MDTE of different algorithms on Russell 2000.
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Fig. 7. MDTE of different algorithms on S&P 500.

the sparsity of the resultant portfolio. Hence, we try different
fitting error values such that the sparsity of the resultant
portfolio meets the target sparsity values.

From the figures, our proposed algorithms outperform
SLAIT, ASLAIT, LASSO, and IT-Aenet in terms of MDTE.
Under the same sparsity, the proposed algorithms obtain
smaller MDTE than SLAIT, ASLAIT, LASSO, and IT-Aenet.
The reason may be that our methods adopt the {y-norm,
while SLAIT, ASLAIT, LASSO, and IT-Aenet employ the
approximate €p-norm. For MNS, it has a smaller MDTE than
ADMM-¢, with 20 assets on Russell 2000. Besides, it is better
than ADMM-{, with ten assets on NASDAQ 100. In other
cases, the proposed methods are superior to MNS.

For our two proposed algorithmes, it is hard to judge which
is better in this experiment. Note that the two proposed
algorithms serve for different investor’s preferences. With the
NNOMP-PGD, investors could explicitly and directly specify
the number of assets and minimize the tracking error. On the

Number of selected assets

Fig. 8. MDTE of different algorithms on NASDAQ 100.

other hand, with the ADMM-{y, investors could explicitly and
directly specify the tracking error and aims at minimizing the
number of the selected assets.

For IT-Aenet, its sparsity is determined by three penalty
parameters, and hence, it is difficult to tune parameters to
attain the same sparsity among all windows. Thereby, the
IT-Aenet obtains different sparsity levels in different windows.
Therefore, we perform a detailed comparison between the
IT-Aenet and our algorithms. Table II lists the comparison
results. For each training window, we tune the parameters of
our proposed algorithms such that their sparsity levels are the
same as those of IT-Aenet. It is seen that the proposed methods
obtain lower MDTESs than IT-Aenet in all windows.

Furthermore, we study the performance of all algorithms
under different market environments, namely, stabilization,
recession, and bubble. Hence, we extract three different volatil-
ity periods from our datasets. Table III shows the comparison
results. It can be seen that our NNOMP-PGD algorithm has
smaller MDTE than SLAIT, ASLAIT, IT-Aenet, and LASSO
in different datasets and investment environments.

Regarding our ADMM-{), it is superior to SLAIT, ASLAIT,
IT-Aenet, and LASSO in all conditions on the Russell
2000 dataset. It is a bit poorer than MMS for the reces-
sion environments. For S&P 500, the tracking error of our
ADMM-{; is a bit greater than that of ASLAIT for the
recession situation, Also, it is a bit poorer than that of
MNS for the bubble environment. For NASDAQ 100, our
ADMM-{ is a bit poorer than the MNS algorithm for the
bubble environment. In general, our ADMM-{ is superior to
the competing algorithms.

In some situations, investors not only want to track market
index but also want to obtain more profits than the mar-
ket index. We investigate the earning performance of the
designed sparse portfolios computed by different algorithms.
Figs. 9 and 10 show the change of accumulated returns over
time, that is, 1 dollar is invested, and then, the revenue varies
with time going on the assumption of no transaction fee. The
ground truth is calculated by the market index, namely, S&P
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TABLE II

MDTES OF THE PROPOSED ALGORITHMS AND IT-AENET IN DIFFERENT WINDOWS ON DIFFERENT DATASETS. THE SPARSITY LEVEL OF NNOMP-PGD
AND ADMM-{( IN EACH WINDOW IS SET WITH REFERENCE TO THE SPARSITY LEVEL OF THE SOLUTION COMPUTED BY IT-AENET

Dataset Window W1 W2 W3 W4 WS W6 w7 W8 W9 WI10 Overall
Sparsity 84 85 83 68 67 51 44 16 9 22 54.8
Russell 2000 NNOMP-PGD 549 483 425 395 513 3.60 6.31 544 583 1753 1.76
MDTE value ADMM-£o 6.78 539 464 399 515 4.03 7.05 580 7.21 14.39 1.45
IT-Aenet 9.58 9.08 734 6.67 876 639 1371 944 9.87 2698 2.78
Sparsity 34 32 27 13 17 48 36 40 33 18 30.0
S&P 500 NNOMP-PGD 3.74 248 1.80 321 284 1.64 230 1.82  2.18 9.09 0.91
MDTE value ADMM-£ 456 226 202 237 269 166 262 252 182 8.30 0.83
IT-Aenet 853 424 297 488 496 7.07 1181 6.73 655 1748 1.76
Sparsity 42 41 39 42 35 36 39 41 42 34 39.1
NNOMP-PGD 1.2 1.81 1. 1. 1. 1.2 1. 1.2 1.4 1 .61
NASDAQ 100 (@) G 8 8 89 66 88 9 79 9 9 6.18 0.6
MDTE value ADMM-{g 1.32 188 1.61 1.86 2.03 1.96 1.94 131 L1.75 6.24 0.63
IT-Aenet 199 208 224 285 322 265 2.89 243 212 6.70 0.67
TABLE III 12 - - -le'ound trutl‘l " ' ' '
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS our NNOMP-PGD
our ADMM-£;,
IN DIFFERENT VOLATILITY CONDITIONS 145 |__ ASLAIT [20] |
——SLAIT [20]
P — T - —-=-=IT-Acnet [22]
Dataset Volatility Condition Stabilization =~ Recession ~ Bubble » 1.4} |---LASSO [21]
c y 5
Sparsity K 41 34 35 5 —— - MINS [63]
Russell | 0w NNOMP-PGD _ MDTE __ 3.63456 528631  4.13764 & 105 |
our ADMM-£g MDTE 3.71665 5.90655  4.05581 K
ASLAIT [20] MDTE 4.73555 9.66602 5.91326 g 1 i
SLAIT [20] MDTE  4.95069 981745  5.78104 E
IT-Acnet [22] MDTE 3.84680 20.1863  12.3010 3
2000 <095 1
LASSO [21] MDTE 7.04236 11.8809 9.89371 .
MNS [65] MDTE 3.74590 5.78365 4.07817 ]
Sparsity K 31 38 83 09 i ,_i 1
S&P our NNOMP-PGD  MDTE 1.32599 2.31485 1.05152 w
our ADMM-{y MDTE 1.33188 2.59954 1.17222 085 L L L L L L
ASLAIT [20] MDTE 1.64346 2.53092 1.28659 Jan. 16 Feb.16 Mar.16 Apr.16 May.16 Jun.16 Jul.16 Aug.16
SLAIT [20] MDTE 1.68770 272004  1.28083 Trading Days
500 IT-Aenet [22] MDTE  2.77384 6.15658  3.81617
LASSO [21] MDTE 3.03492 6.84620 1.84955 Fig. 9. S&P 500: trading days versus accumulated returns by the proposed
MNS [65] MDTE 1.43451 3.13376 1.06403 algorithms with ASLAIT, SLAIT, IT-Aenet, LASSO, and MNS with the
Sparsity K 0 39 3 number of selected assets and training days being 25 and 110, respectively.
NASDAQ our NNOMP-PGD  MDTE 2.20643 1.76343 1.64927
our ADMM-{ MDTE 2.33211 1.73263 1.95529 1.15 — —Grend il T T T T
ASLAIT [20] MDTE 2.50001 1.92163 2.40761 our NNOMP-PGD
our ADMM-/,
SLAIT [20] MDTE 3.05776 1.92274 2.48873 1.4 l—AstarT 20 0 |
100 IT-Aenet [22] MDTE 3.40804 3.54744 222207 —SLAIT [20]
LASSO [21] MDTE  3.48859 3.94443  2.57729 o :ﬁgggefz[ﬁﬂ
MNS [65] MDTE 2.76912 274553 1.84726 1.05 [|- — - NS [65]

500 in Fig. 9 and NASDAQ 100 in Fig. 10. The other lines
represent the accumulated returns of designed sparse portfolios
on different datasets. In this experiment, the first 110 days are
utilized to train w with 25 assets, and then, the revenues of
150 days are plotted. In Fig. 9, it is observed that all designed
sparse portfolios have more returns than the ground truth.
It is clear that our algorithms attain more profits than SLAIT,
ASLAIT, LASSO, and MNS. Besides, IT-Aenet is superior to
ADMM-{¢, but inferior to our NNOMP-PGD. On NASDAQ
100, the proposed algorithms outperform the ground truth.
In contrast, SLAIT, ASLAIT, IT-Aenet, LASSO, and MNS are
below the ground truth and have a slightly large daily MDTE.

Remark: It should be noticed that the SLAIT, ASLAIT,
IT-Aenet, and LASSO do not have the ability to control

Accumulated Returns
o
©
. -

091

0.85
Jan. 16 Feb .16 Mar.16 Apr.16 May.16 Jun.16 Jul.16 Aug.16
Trading Days

Fig. 10. NASDAQ 100: trading days versus accumulated returns by the
proposed algorithms with ASLAIT, SLAIT, IT-Aenet, LASSO, and MNS with
the number of selected assets and training days being 25 and 110, respectively.

the sparsity and the fitting error. On the other hand, our
NNOMP-PGD is designed to directly control the sparsity
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of the resultant portfolio and our ADMM-{, is designed to
control the fitting error of the resultant portfolio.

V. CONCLUSION

We have derived two effective algorithms based on the
{o-norm to deal with the sparse index tracking problem. The
NNOMP-PGD considers explicitly and directly controlling
the number of assets. The ADMM-{, considers explicitly
and directly controlling the tracking error. In addition, the
convergence of the proposed algorithms has been reported.
Numerical experiments using real-world datasets have demon-
strated that the proposed algorithms outperform several exist-
ing approaches. In general, the proposed algorithms have lower
tracking errors. Also, the proposed algorithms provide better
controllability on the sparsity or tracking error of the resultant
portfolio.

Traditional sparse recovery usually does not consider spar-
sity, sum-to-one, and nonnegativity requirements simultane-
ously. Hence, one research direction is to develop more
efficient and effective algorithms with high controllability.

In addition, there are several possible future works. Cur-
rently, we only consider two cases of controllability, either
sparsity and tacking error. It is interesting to develop an
algorithm to allow investors to simultaneously specify the
predefined values on sparsity and tracking error. In this
case, sparse index tracking becomes a constraint satisfaction
problem. Also, to provide more flexibility for investors, it is
interesting to set upper and lower bounds on the investment
percentages on the selected assets. Last but not least, most
of the existing index tracking algorithms do not consider the
variance of the tracking error or the risk of the portfolio.
Hence, it is suggested to add constraints to reduce the variance
of the tracking error and the risk of the portfolio.

APPENDIX A
CLOSED-FORM SOLUTION OF w IN ADMM-{,
Optimization of w in (20) is equivalent to minimizing the
sum of N scalar subproblems

. A2 12
min V() = [l + = [w -

N

= ;(5(11)}1) + %(wﬁ — 2wn(bl—1)n + (bt_l)rzl))
N

= Zv(wn).

Hence, it is sufficient to show that the minimum value of (28)
can be attained by minimizing with respect to each w,. Since
the value of d(w,) is either 1 or 0, to calculate the minimizer
of (28), we discuss two cases for each w,, namely, w, =
0 and w, # 0. It is clear that if w, = 0, then v(w,) =
J2/2(b'"1)2. For w, # 0, we know that w, = (b'™"), leads
to the minimum value g(w,) = 1. Therefore, the minimum of
v(wy) in different cases is

(28)

ju2 —1\2 . _
min v (w,) = E(b )"’ if 1y =0 (29)
1, if w,=(b'"7"),.

If w, is not zero, (42/2)(b'~")2 must be less than or equal
to 1, that is, [(b'™"),| = (2/2,)"/?. Hence, the solution (22)
has been proven. It is worth noting that the optimal solution
to (20) is not unique when there exists (b'"!), = (2/12)"/%.
The reason is that v((b'""),) = 0 for ('™, = (2/12)"/>.
Hence, (22) is the unique solution with ('), #
(2/22)'/? and one of optimal solutions with (b'""), =
(2/22)'"2.

APPENDIX B
PROOF OF P1 AND P2

A. Proof of P1

For L(w',z',7"), we have

L'z y") - L' 2,y )
=L,z y"") - L ",z y"") <« w-update
+L(w', 2y = L(w', 2", y"") < z-update
+L(w',2',y") = L(w',2',y""") < y-update.  (30)

Because w' is the optimum solution of L(w,z'~', y ') based
on (22) with fixed z'~! and y'~!, resulting in
£(wt’zl—1’yl—1) _£(wl—1,zt—l’yt—l) EO (31)

On the other hand, since L(w,z,7) is strongly convex with
respect to z, the relationship between L(w’,z'~',y'~!) and
L',z y""")is
£(wl,zt—l’ yt—l) 2 £(wl’zt’ yt—l)
+ Vzﬁ(w’,z’, y tfl)T(ztfl - zt)
my 2
+§||z’ —-2'|. (32)

As 7' is the optimum solution of £(w’, z,y'~") based on (26),
which leads to V,L|qy 7 yi-1y) = 0, then we attain

E(w’,z’, ytfl)_ﬁ(wt’ztfl, ytfl) < _% ||z[71—z’ ”; (33)

From (17), we know that g(z) = A;(max{0, |Az — r||§ —
N>+ (Z"1-1)24+3 Y (max{0, —z,})?), and then, the gradient
of g(z) is

V(@ =241 (5(0, I 4z =713 - €) (1 Az — r[}3 - €) AT
x(Az —r) + (z’Tl - 1)1 n min{O,z}). (34)
Meanwhile, we have
Y =9+ -2

I
Vel zyy = _iz(wt e ,1_2?[_1) +Ve(Z') =0.
(36)

(35)

Hence, we can attain w’ —z' = (1/22)(y" —y'~") from (35)
and Vg(z') = Aa(w' —z' 4+ (1/2)y"™") from (36). Further-
more, based on these two equations, we obtain Vg(z') = yp".
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Therefore, for updating y
E(w’,z’, yz) _ E(w’,z’, yz—l)
= () (@ -2)= (') (' -2
_ (yt . yt—l)T(wz _zt)

_ i =12
=gl =
1 _
= Vs @) - Vel Nl
< Sl -2 G37)

where C is the Lipschitz continuous constant, and the last
inequality is based on the property of Lipschitz continuous
gradient. Combining (31), (33), and (37), we attain

E(wt,zt, yt) . L:(wtil,ztfl, ytfl)

< (% - %) |2 =272 (38)

This means that £L(w’,z’,y") is monotonically nonincreasing
with 4, > 2C/m).

B. Proof of P2

Based on P1, we get
L(w',z',y")

i
= [Jw'[ly + ) (' = 2) + 5 [ = 2|3

+/11((max{0,

(39)
A
= ||w'[], + V@) (@ — )+ 2 || —2|[;
—i—/ll((max{o, Az’—rHi—e})2
2
+(@)1-1)
N
+ > (max{o, —(z’)n})z). (40)
n=1
Since g(z) is convex and Lipschitz continuous with

0 <z <1, we obtain
T ¢ 2
gw) —g@) = Ve@) (w—2)+ Sllw—zl; @D
where C is the Lipschitz continuous constant, resulting in

C
8@)+ V@) (w—z) > g(w) — > lw - zZI3. 42
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Plugging (42) into (39) yields

clw'2p) = ', + (5= 5) o' =<

2 2
()
- 3 sl o))

(43)

+ ((w’)Tl - 1)2)

where if A, > C, then we have L(w',z',y") > 0 . In addition,
combining the conclusion of P1 that L(w’, z’, y ") is monoton-
ically nonincreasing with 1, > (2C/m), then L(w',z',y")
converges if 4, > max((2C/m), C).

APPENDIX C
PROOF OF THEOREM 2

For z', based on (38), we have

ﬁ(wt,zt’yt) _ ﬁ(wl_l,zt_l,yt_l) < —T”Zl e Hi

(44)
where 7 > 0. Then, we get
1
Jo =2t} = (o) — 2y )
(45)

Since L(w',z',p') has been proven to be convergent,
we obtain ||z —z'~!|3 — 0 with 1 — +o0.
Regarding y', according to (37), we attain

v =5 = cle' =2 ~'[ (46)

Thus, [ly* — '3 — 0 with t+ — oo can be obtained
because |z —z'7'||3 — 0 with t — +o0.

From (19¢), we have w’ = (1/42)(y" —y'~") + 2. Thus,
we have

t —112 L., - t
Jof — 0 = | )+
1 2
__(ytfl _yt—Z) _ztfl (47)
A )
L., o=l 1
< (|50 -v) +12 -2,
1 2
+ /1—2(}'”‘ y'?) 2) (48)
<3 i(yr - yr—l) ? + Hzt _zr71H2
= 22 5 2
1 2
+ Tz(y”‘ -7 2). (49)

Inequality (48) comes from triangle inequality. Inequality (49)
comes from the fact that 2ab < a® + b? for any real a and b.
Since lim,_ [|z" — z'7'||5 = 0 and lim,¢ |y’ —y""'|5 = 0,
(49) means that |lw’ —w'~'||5 — 0, as t — 0.
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