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Abstract

Low-rank matrix completion is an important research topic with a wide range of applications. One prevailing

way for matrix recovery is based on rank minimization. Directly solving this problem is NP hard. Therefore,

various rank surrogates are developed, like nuclear norm. However, nuclear norm regularization minimizes

the sum of all the singular values, and hence the rank is not well approximated. we propose a new rank

substitution named truncated quadratic norm that performs the corresponding truncated quadratic operation

on the singular values. This function takes the square of the minor singular values and maps large singular

values to one. In order to reduce computational complexity, the original target matrix is factorized into two

small matrices on which the truncated quadratic norm is imposed. The resultant problem is then solved by

alternating minimization. We also prove that the solution sequence is able to converge to a critical point.

Experimental results on synthetic data and real-world images demonstrate the excellent performance of our

method in terms of recovery accuracy.

Keywords: matrix completion, rank surrogate, bilinear factorization, alternating minimization,

convergence.

1. Introduction

Matrix completion (MC) aims at restoring a matrix given only partially observed and possibly noisy

entries, which is ill-posed without any assumption. Thereby, low-rank assumption is usually imposed on

the target matrix, resulting in low-rank MC problem. It has numerous applications in computer vision [1–

4], pattern recognition [5–9], recommender system [10, 11], and radar signal processing [12, 13]. In these

scenarios, the rows/columns of the target matrix are highly correlated, and thus the matrix has approximately

low rank. For example, only a few large singular values of natural scene images contain the major information,

and the remaining singular values are insignificant [14, 15].

One mainstream approach to tackle low-rank MC is based on rank minimization. Due to the noncontinu-

ity and nonconvexity of the rank function, many rank surrogates have been proposed. The most well-known
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one is the nuclear norm that is equivalent to the sum of all singular values. The nuclear norm as a convex

lower bound of the rank function has been applied to matrix recovery [16, 17], of which the resultant op-

timization problem is widely handled by singular value thresholding operation [18]. However, minimizing

the nuclear norm causes much penalty on large singular values [15, 19], which makes the solution deviate

a lot from the ground truth. To deal with this issue, truncated nuclear norm (TNN) is developed [20, 21],

which is the nuclear norm subtracted by a few largest singular values. That is, TNN minimization only

penalizes the small singular values and outperforms the nuclear norm approach in MC. Unfortunately, TNN

requires predetermining the number of largest singular values, which is vital for the completion performance.

Weighted nuclear norm (WNN) [22, 23] is another improvement strategy, which assigns different weights to

the singular values and then adds them together. Specifically, large singular values are allocated with small

weights and vice versa. To determine the weights, Lu et al. [22] use the gradients of the surrogate functions

of the l0-norm, and Gu et al. [23] adopt a sparse coding technique [24].

To further reduce the gap between the rank function and variants of nuclear norm, other rank substitu-

tions have been considered. Schatten p-norm [25] calculates the lp-norm of the singular value vector. When

0 @ p @ 1, it can better approximate the rank function than the nuclear norm. However, the solution of

lp-norm minimization may converge to local optimum due to the nonconvexity. Furthermore, the corre-

sponding algorithms are complicated because the lp-norm is not differentiable at zero point [26, 27]. The

log-determinant heuristic [28–30] also shows superior performance over the nuclear norm. It can penalize

small singular values more than the large ones [30] and thus improves the performance of the singular value

thresholding operator [31, 32]. Nevertheless, the Schatten p-norm and logarithmic norm cannot well depict

the rank function for large singular values.

Employing the aforementioned rank surrogates inevitably needs implementing singular value decompo-

sition (SVD) on the target matrix. The computational cost for performing SVD on a large matrix is high.

Apart from rank minimization, another approach for MC is based on matrix factorization which avoids

computing SVD. The objective low-rank matrix X > Rm�n is decomposed into two small factor matrices in

the form X � UV with U > Rm�r and V > Rr�n, where r is the assumed rank of X. Factorization based

MC minimizes the gap between the observed matrix and UV on the observation set. The low-rank property

of X is ensured by setting r P min�m,n�. This model can be formulated as a least squares problem [26],

which can be solved efficiently by subspace evolution and transfer [33], alternating minimization [34], and

proximal alternating minimization (PAM) [35]. Under the matrix factorization framework, the selection of r

is important for the completion performance, especially when the observed matrix contains noise. Rank-one

matrix pursuit strategy aims to select the best r, which includes orthogonal rank-one matrix pursuit [36, 37],

l1-norm and lp-norm regularized rank-one matrix completion [38, 39]. Furthermore, if the reconstruction

error is assumed to be a unimodal function of r, adaptive bisection search [40] is considered to determine r.

These algorithms try to estimate the objective matrix by a linear combination of rank-one matrices wherein

the estimation error is still controlled by a manually-set accuracy threshold.
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In this paper, we design a nonconvex rank substitution, called truncated quadratic norm, to solve the

low-rank MC problem. We utilize a piecewise function to process singular values. The singular values are

divided into large and small value groups by a threshold. As for large inputs, the function adopts constant

value one in order to faithfully follow the rank function, while the quadratic function is used to penalize

small singular values. The sum of the function values for all singular values is defined as the truncated

quadratic norm. In doing so, over penalization on large singular values is avoided. This piecewise function,

or rather truncated quadratic function, is easy to handle, and the corresponding truncated quadratic norm

MC problem has a closed-form solution. Furthermore, combining the advantages of the rank minimization-

based and factorization-based methods, X is decomposed into two small matrices X1 > Rm�d and X2 > Rd�n

in the form X � X1X2, where the decomposition parameter d is slightly larger than the rank of X. When

the true rank is unknown, we suggest d � 0.1 �min�m,n� for exactly low-rank data, and d � 0.4 �min�m,n�
for images which have approximately low rank. Then the proposed truncated quadratic norm regularization

is imposed on X1 and X2 individually. The main contributions of this paper are summarized as

(1) We design a new MC model utilizing the truncated quadratic norm, which is defined based on a truncated

quadratic function. This norm can better approximate the rank function, and the resultant MC problem

is easy to handle. To lessen the computational burden for SVD, the objective matrix is factorized into

two small matrices on which the truncated quadratic norm regularization is imposed.

(2) We employ alternating minimization based on proximal linear method to solve the resultant problem

with closed-form expressions. The solution sequence is proved to converge to a critical point, while the

sequence convergence of many existing MC schemes using nonconvex surrogates cannot be guaranteed.

(3) Experimental results on synthetic data and real-world images demonstrate the effectiveness of our method

in terms of recovery accuracy. Moreover, we show that the completion results are not sensitive to the

decomposition parameter d.

The organization of this paper is as follows. In Section 2, related work on representative matrix rank

substitutions and bilinear MC models are reviewed. The proposed algorithm is developed in Section 3.

Evaluation results of our method are included in Section 4. Section 5 concludes our work.

2. Related Work

In this paper, scalars and matrices are written in lowercase letters and boldface capital letters, respec-

tively. The jth singular value of matrix X in descending order is represented by σj �X�. Operator diag���
establishes a diagonal matrix whose diagonal elements come from the input entries. Matrix trace operator

is denoted as tr���.
Let YO > Rm�n be an incomplete matrix with missing elements, and O > Rm�n is a binary matrix. The

indices of 1 and 0 in O indicate the locations of the observed and unobserved elements in YO, respectively.

3



The task for MC is to find the unobserved entries in YO using the observed information. Low-rank property

is usually imposed on the recovered matrix, which can be represented as [30]

min
X

F �X� � λ YXbO �YOY2F �
Ω �X� . (1)

Here X > Rm�n is the estimated target matrix, b denotes the element-wise Hadamard product, λ A 0 is a

weight parameter, and
Ω ��� is a spectral regularization operator [41] related to the matrix rank. The first

term in (1) is the fidelity, which measures the difference between X and YO with regard to the observed

elements. The second term
Ω ��� can be written as

Ω �X� � Pmin�m,n�
j�1 S �σj �X�� with S��� being the penalty

function on singular values. For rank function, the penalty function is the l0-norm. Intractable rank function

is usually replaced by surrogates based on different penalty functions on singular values. The nuclear norm

is defined as YXY
�
� Pmin�m,n�

j�1 σj �X�, that is, S�σ� � σ. To better approximate the rank, other substitutions

have been introduced. For example, Schatten p-norm [25]

YXYSp
�
�
�
min�m,n�

Q
j�1

σp
j �X���

1~p

(2)

is induced by using penalty function S�σ� � σp with 0 @ p @ 2, while the logarithmic norm [30] corresponds

to S�σ� � log�σp
� ϵ� with ϵ A 0 and 0 @ p B 1.

Solving (1) requires SVD, which is computationally demanding. To lessen the computational burden,

X can be decomposed into two small matrices, and bilinear factor matrix regularization is proposed. For

example, double nuclear norm [15] is suggested:

YXYD-N � min
X1,X2�X�X1X2

1

4
�YX1Y� � YX2Y��2 , (3)

where X1 > Rm�d and X2 > Rd�n are two small factor matrices. Addressing (3) can be divided into solving

two subproblems for X1 and X2, which only requires SVD calculation of two small matrices, and thus the

computational cost is reduced. Moreover, the Frobenius norm of two factor matrices U > Rm�r and V > Rr�n

is proved to be an upper bound of the nuclear norm [42], namely

YXY
�
� min

U,V�X�UV

1

2
�YUY2F � YVY2F � , (4)

resulting in a nonconvex optimization problem, which even avoids SVD. PAM utilizes (4) to solve rank

constrained problems and converges to the second-order stationary point with mild initial conditions [35].

3. Proposed Algorithm

In this section, we formulate the truncated quadratic norm-based MC (TQNMC). Then the problem is

solved by alternating minimization. We adopt the proximal linear technique to simplify the objective function

with respect to each variable. Besides, the convergence and computational complexity of the algorithm are

analyzed.
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Fig. 1: Penalty functions on singular values of nuclear norm, Schatten p-norm (p � 0.7), rank, and truncated quadratic norm

(a � 3e�2).

3.1. Factor Matrix Rank Minimization via Truncated Quadratic Norm

We introduce truncated quadratic norm to better approximate the rank function. First, a truncated

quadratic function is designed to tackle the small and large singular values differently:

Sa�σ� �
¢̈̈̈̈
¦̈̈̈
¤̈

1, for σ C
»

1~a,
aσ2, for 0 B σ @

»
1~a,

(5)

where a A 0 is a threshold differentiating the small and large singular values. Next, we give the definition of

the truncated quadratic norm based on Sa�σ�.
Definition 1. (Matrix Truncated Quadratic Norm2): Given a matrix X > Rm�n, its truncated quadratic

norm is

YXYTQ �

¿ÁÁÁÀmin�m,n�

Q
j�1

Sa �σj�X��. (6)

We illustrate the penalty functions on singular values of the nuclear norm, Schatten p-norm, rank opera-

tor, and truncated quadratic norm in Fig. 1. The quadratic function for small singular values is continuous

at the zero point comparing with the rank function. For large singular values, the truncated quadratic norm

is the same as the rank function whereas the nuclear norm regularization may cause over minimization of

large singular values [15]. Besides, there is deviation between the Schatten p-norm and the rank. Thus, the

truncated quadratic norm is a better rank surrogate.

MC based on truncated quadratic norm minimization is formulated as:

min
X

F �X� � λYObX�YOY2F �YXY2TQ. (7)

2It is a quasi-norm.
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To reduce the computational cost, similar to (3), we decompose X > Rm�n into X1 > Rm�d and X2 > Rd�n.

When d C rank�X�, according to matrix rank property, we have

rank�X� � rank�X1X2� B min�rank�X1�, rank�X2��, (8)

which gives an upper bound of the rank of X. Based on (8), minimizing the rank of X can be approximated

by

min
X1,X2

rank�X1� � rank�X2�. (9)

We substitute
Ω �X� in (1) with the rank function and then combine (9) to attain

min
X1,X2

F �X1,X2��λ YOb �X1X2��YOY2F �rank �X1��rank �X2� . (10)

Replacing the rank function in (10) with the truncated quadratic norm produces the model of TQNMC:

min
X1,X2

F �X1,X2� � λYOb �X1X2��YOY2F �YX1Y2TQ�YX2Y2TQ. (11)

As SVD is performed on two small matrices in (11), its computational requirement is less than (7).

3.2. Alternating Minimization via Proximal Linear Method

We adopt alternating minimization to solve (11), where the objective function F �X1,X2� is minimized

alternately with respect to X1 and X2. In the kth iteration, the problem to update Xk
1 is

Xk
1 �arg min

X1

YX1Y2TQ � λ ZOb�X1X
k�1
2 ��YOZ2F , (12)

For the ease of representation, we denote f �X1,X2� � YOb �X1X2��YOY2F . It is easy to verify that

f �X1,X2� has a continuous Lipschitz gradient with respect to each coordinate.

Problem (12) is a regularized least squares problem and can be efficiently solved by proximal linear

method [43, 44]. We rewrite (12) by linearizing f�X1,X
k�1
2 � with respect to X1:

Xk
1 � arg min

X1

1

λ
YX1Y2TQ �

µk
1

2
ZX1 �Xk�1

1 Z2
F
� a©X1f �Xk�1

1 ,Xk�1
2 � ,X1 �Xk�1

1 f
� arg min

X1

1

λ
YX1Y2TQ �

µk
1

2
ZX1 �Xk�1

1 Z2
F
� a©X1f �Xk�1

1 ,Xk�1
2 � ,X1f � a©X1f �Xk�1

1 ,Xk�1
2 � ,Xk�1

1 f . (13)

Here µk
1 is the proximal parameter in the kth iteration. We set µk

1 � γLk
1 , where 1 @ γ @ ª and Lk

1 is

the Lipschitz constant of ©X1f �Xk�1
1 ,Xk�1

2 � with respect to X1. Neglecting the irrelevant term which is

independent of X1, namely a©X1f �Xk�1
1 ,Xk�1

2 � ,Xk�1
1 f, we obtain

Xk
1 � arg min

X1

1

λ
YX1Y2TQ �

µk
1

2
ZX1 �Xk�1

1 Z2
F
� a©X1f �Xk�1

1 ,Xk�1
2 � ,X1f . (14)

To accelerate the update rate, we extrapolate a point X̂k�1
1 between Xk

1 and Xk�1
1 [43], viz.

X̂k�1
1 �Xk�1

1 � ωk
1 �Xk�1

1 �Xk�2
1 � , (15)
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where ωk
1 is the extrapolation weight. The computation of ωk

1 follows the strategy in [45, 46], which will be

detailed later in this subsection. Then Xk
1 is updated based on X̂k�1

1 , and (14) can be rewritten as

Xk
1 � arg min

X1

1

λ
YX1Y2TQ �

µk
1

2
ZX1 � X̂k�1

1 Z2
F
� a©X1f �X̂k�1

1 ,Xk�1
2 � ,X1f . (16)

If the solution Xk
1 of (16) causes F �Xk

1 ,X
k�1
2 � A F �Xk�1

1 ,Xk�1
2 �, we adopt X̂k�1

1 �Xk�1
1 and redo the update.

We further represent (16) in the proximal optimization format:

Xk
1 � arg min

X1

1

λ
YX1Y2TQ �

µk
1

2
ZX1 �Mk

1Z2F , (17)

where Mk
1 � X̂k�1

1 �
1
µk
1

©X1f �X̂k�1
1 ,Xk�1

2 �.
In the following, we devise a theorem to acquire the solution of (17).

Theorem 1. (Truncated Quadratic Singular Value Thresholding): Let the SVD of C > Rm�n be C �

QCΛCR
T
C with ΛC � diag�σ1 �C� ,�, σmin�m,n� �C��. The solution of problem

min
X

1

2
YX �CY2F � α YXY2TQ (18)

is given by X � QCT Qα,a �ΛC�RT
C. The element-wise truncated quadratic singular value thresholding

(TQSVT) operator T Qα,a��� is defined as

T Qα,a �c� � arg min
σ

h�σ�, (19)

where h�σ� � 1
2
�σ � c�2 � αSa �σ� and σ > �max �c,»1~a� ,min �»1~a, c~�1 � 2αa���.

Proof : Let the SVD of X be X �QXΛXRT
X, then the function in (18) is rewritten as

1

2
YX �CY2F � α YXY2TQ

�
1

2
ZQXΛXRT

X �QCΛCR
T
CZ2F � αtr �Sa �ΛX��

�
1

2
�tr �ΛT

XΛX� � tr �ΛT
CΛC� � 2tr �XTC�� � αtr �Sa �ΛX��

C
1

2
�tr �ΛT

XΛX��tr �ΛT
CΛC��2tr �ΛT

XΛC���αtr �Sa �ΛX��
�

min�m,n�

Q
j�1

1

2
�σj �X� � σj �C��2 � αSa �σj �X�� . (20)

Here the inequality utilizes the Von Neumann’s trace inequality [47], and the equality holds when the left

and right singular vector matrices of X achieve QC and RC, respectively. Based on (20), the minimizer of

(18), denoted by X�, can be obtained by solving the jth decoupled singular value problem:

σ�j �X� � arg min
σj�X�C0

h �σj �X�� ∆
�

1

2
�σj �X� � σj �C��2 � αSa �σj �X�� . (21)

Then

X�

�QCdiag �σ�1 �X� ,�, σ�min�m,n� �X��RT
C. (22)

There are two cases for (21) due to the piecewise function Sa �σj �X��:
7



Case 1: For σj �X� C»1~a,

h �σj �X�� � 1

2
�σj �X� � σj �C��2 � α, (23)

and the minimizer is

σ�j �X� � max �σj �C� ,»1~a� . (24)

Case 2: For 0 B σj �X� @»1~a,

h �σj �X�� � 1

2
�σj �X� � σj �C��2 � αaσj �X�2 , (25)

of which the first-order derivative is

h
� �σj �X�� � σj �X� � σj �C� � 2αaσj �X� . (26)

Setting h
� �σj �X�� � 0 yields σj �X� � σj �C� ~ �1 � 2αa�. The minimizer of (25) is

σ�j �X� � min �σj �C� ~ �1 � 2αa� ,»1~a� . (27)

Combining Cases 1 and 2, we conclude that (21) equals

σ�j �X� � T Qα,a �σj �C�� � arg min
σj�X�

h �σj �X�� , (28)

where

σj �X� > �min �σj �C� ~ �1 � 2αa� ,»1~a� ,max �σj �C� ,»1~a�� . (29)

The proof is complete.

The TQSVT operation in Theorem 1 can be used to update X1 in (17). Alternately updating X1 and X2

produces the solution of (11). The update can end after enough iterations or without further improvement of

the solution. The procedure of TQNMC is summarized in Algorithm 1, where the design of the extrapolation

weight ωk
1 is given.

3.3. Convergence Analysis

For ease of representation, we denote F �X1,X2� and f�X1,X2� as F �X� and f�X�, respectively, while

F �Xi� and f�Xi� for i � 1 or 2 mean the other factor matrix is fixed. We first discuss the subsequence

convergence.

Theorem 2. (Subsequence Convergence): Assuming F �Xk� � ª if and only if ZXkZ
F
� ª, the sequence

�Xk
i �2i�1 generated by Algorithm 1 with parameters µk

i and ωk
i is bounded if f �X� is gradient Lipschitz

continuous on any bounded set and the Lipschitz constant Lk
i of ©Xif �X̂k�1

i � is lower and upper bounded,

that is, there are a lower bound ℓ and upper bound L for all Lk
i with 0 @ ℓ B Lk

i B L @ª.

Let X̄i be a limit point of �Xk
i �, then there exists a subsequence of �Xk

i � converging to X̄i, which is also

a critical point of (11).
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Algorithm 1 Alternating Minimization based on Proximal Linear Method for Solving (11)

Input: Incomplete matrix YO > Rm�n, O > Rm�n, decomposition parameter d, iteration number N , a, λ,

µmin, randomly initialized X0
1 and X0

2, X�1
1 �X0

1, X�1
2 �X0

2, µ0
1 � 1, µ0

2 � 1, t0 � 1.

Output: X

1: for k � 1 to N do

2: Update µk
1 � max ��σ1 �Xk�1

2 ��2 , µmin�.

3: Update ωk
1 �min ��tk�1�1�~tk,0.9999

»
µk�1
1 ~µk

1�, where tk � �1 �»1 � 4t2k�1�~2.

4: Update X̂k�1
1 �Xk�1

1 � ωk
1 �Xk�1

1 �Xk�2
1 � and Mk

1 � X̂k�1
1 �

1
µk
1

©X1f �X̂k�1
1 ,Xk�1

2 �.
5: Update Xk

1 �QMk
1
T Q 1

λµk
1

,a �ΛMk
1
�RT

Mk
1
, where Mk

1 �QMk
1
ΛMk

1
RT

Mk
1
.

6: if F �Xk
1 ,X

k�1
2 � A F �Xk�1

1 ,Xk�1
2 � then

7: Update X̂k�1
1 �Xk�1

1 and Mk
1 � X̂k�1

1 �
1
µk
1

©X1f �X̂k�1
1 ,Xk�1

2 �.
8: Update Xk

1 �QMk
1
T Q 1

λµk
1

,a �ΛMk
1
�RT

Mk
1
, where Mk

1 �QMk
1
ΛMk

1
RT

Mk
1
.

9: end if

10: Update µk
2 � max ��σ1 �Xk

1��2 , µmin�.

11: Update ωk
2 �min ��tk�1�1�~tk,0.9999

»
µk�1
2 ~µk

2�.

12: Update X̂k�1
2 �Xk�1

2 � ωk
2 �Xk�1

2 �Xk�2
2 � and Mk

2 � X̂k�1
2 �

1
µk
2

©X2f �Xk
1 , X̂

k�1
2 �.

13: Update Xk
2 �QMk

2
T Q 1

λµk
2

,a �ΛMk
2
�RT

Mk
2
, where Mk

2 �QMk
2
ΛMk

2
RT

Mk
2
.

14: if F �Xk
1 ,X

k
2� A F �Xk

1 ,X
k�1
2 � then

15: Update X̂k�1
2 �Xk�1

2 and Mk
2 � X̂k�1

2 �
1
µk
2

©X2f �Xk
1 , X̂

k�1
2 �.

16: Update Xk
2 �QMk

2
T Q 1

λµk
2

,a �ΛMk
2
�RT

Mk
2
, where Mk

2 �QMk
2
ΛMk

2
RT

Mk
2
.

17: end if

18: if P2
i�1

ZXk
i �X

k�1
i Z

F

ZXk�1
i

Z
F

B 10�3 then

19: break

20: end if

21: end for

22: Calculate X �Xk
1X

k
2 .

The proof of Theorem 2 is given in Appendix A.

We then introduce the definition of Kurdyka- Lojasiewicz (K L) property [43] which is useful to prove the

whole sequence convergence. After that, a theorem on whole sequence convergence is provided.

Definition 2. (K L Property): A function ψ satisfies the K L property at point x̄ > dom�∂ψ� if there exist

η A 0, a neighborhood B�x̄, ρ� ∆
� �x � Yx � x̄Y @ ρ�, and a concave function ϕ�a� � c � a1�θ for some c A 0 and

θ > �0,1�, such that for any x > B�x̄, ρ� 9 dom�∂ψ� and ψ�x̄� @ ψ�x� @ ψ�x̄� � η, it holds

ϕ
� �Sψ�x� � ψ�x̄�S�dist�0, ∂ψ�x�� C 1. (30)

Here dom�∂ψ� � �x � ∂ψ x g� and dist �0, ∂ψ� � min�YyY � y > ∂ψ�.
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Fig. 2: Six benchmark grayscale images with dimensions 256 � 256.

Theorem 3. (Whole Sequence Convergence): Based on Theorem 2, assuming that X0
i is sufficiently close to

X̄i, the sequence �Xk
i �2i�1 generated by Algorithm 1 converges to X̄i, if the following conditions are satisfied:

1. The objective function F �Xi� conforms K L property at point X̄i within neighborhood B�X̄i, ρ� for

certain ρ;

2. The sequence �F �Xk
i �� is non-increasing.

The proof of Theorem 3 is provided in Appendix B. Note that all appendices are presented in supple-

mentary material.

In the following, we verify Algorithm 1 satisfying the conditions required in Theorems 2 and 3.

As in Theorem 2, we have already mentioned that f �X� is gradient Lipschitz continuous. Moreover, in

Algorithm 1, µk
1 � γL

k
1 � max �ZXk�1

2 Z2
F
, µmin� is lower and upper bounded. Similarly, µk

2 is lower and upper

bounded. Since 1 @ γ @ª, Lk
i for i � 1,2 is also lower and upper bounded. Next we turn to the requirements

in Theorem 3. K L property has been introduced for the real analytic function. Piecewise polynomial

function has been proved to satisfy this property [48]. The truncated quadratic norm is defined based on

a piecewise polynomial function, and f �X� is a real polynomial function. Hence the objective function

F �X� is a real analytic function and satisfies K L inequality. For Condition 2, whenever F �Xk
i � A F �Xk�1

i �,
we set X̂k�1

i � Xk�1
i and redo the iteration. Then the solution Xk

i is acquired by minimizing (14). The

difference between (14) and the objective function (12) is that (14) utilizes the first-order approximation of the

quadratic term f �X� in (12). Thus, minimizing (14) equals minimizing (12). Therefore, F �Xk
i � B F �Xk�1

i �
is guaranteed.

Above all, we conclude that �Xk
i �2i�1 converges to a critical point of (11).

3.4. Computational Complexity Analysis

In the kth iteration, we need to compute Xk
1 > Rm�d and Xk

2 > Rd�n given YO > Rm�n and the decom-

position parameter d. Without loss of generality, we assume m C nQ d. For Xk
1 , according to Algorithm 1,

we need to calculate ZXk�1
2 Z2

F
, ©X1f �X̂k�1

1 ,Xk�1
2 �, the SVD of Mk

1 , and Xk
1 � QMk

1
T Q 1

λµk
1

,a �ΛMk
1
�RT

Mk
1
.

Calculating ZXk�1
2 Z2

F
and ©X1f �X̂k�1

1 ,Xk�1
2 � consumes at most O�md� and O�mnd�, respectively. The

10



Fig. 3: Phase transition results for synthetic data completion by D-N, WNNM, SpM, PAM, LRMF, and TQNMC. The x, y,

and z axes represent rank, OR, and RRSE, respectively. For ease of comparison, results of TQNMC are included in all cases.

truncated SVD of Mk
1 needs at most O�md2� [49]. Calculating Xk

1 � QMk
1
T Q 1

λµk
1

,a �ΛMk
1
�RT

Mk
1

costs at

most O��m � d�d2�. Overall, the computational complexity of TQNMC is O�mnd�.

4. Experimental Results

In this section, we conduct experiments to evaluate the performance of TQNMC using synthetic data

and benchmark grayscale images in Fig. 2. Moreover, TQNMC is compared with D-N [15], WNNM [23],

SpM [25], PAM [35], and LRMF [30], which adopt different rank surrogates. We tune the parameters of

the selected algorithms according to authors’ suggestions to get their best performances. For TQNMC, a

is chosen in the interval �2�10�3,5�10�2�, which does not have severe impact on the results. All these

algorithms are run in MATLAB R2021a on a computer with 2.9GHz CPU and 16 GB memory.

4.1. Synthetic Data Completion

For the generation of synthetic matrices, we first create two random matrices U > Rm�r� and V > Rr��n

using MATLAB command randn() with m � 200 and n � 200. Multiplying U and V produces matrix

À > R200�200. To further approximate the singular values of a practical low-rank matrix, we modify the jth

singular value of À as 210�j for j > �1, r�� [37]. Finally, the synthesized matrix A is acquired by adding white

Gaussian noise to À with signal-to-noise ratio being 15dB.

We generate nine matrices using the above strategy by setting r� from 10 to 50 in step of 5. Then we

randomly sample the matrix entities as the observation set and utilize different algorithms to recover the

11
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Fig. 4: RRSE versus d for synthetic data of r� � 10,15 and images Baboon, Facade, Sailboat at OR = 0.5.

unobserved elements. For each matrix, the observation ratio (OR) is set from 0.16 to 0.4 in step of 0.02. We

compare the results of D-N, WNNM, SpM, PAM, LRMF, and TQNMC in terms of the relative root square

error (RRSE) defined as

RRSE � YX�

�XrefYF ~ YXrefYF . (31)

Here Xref is the ground-truth matrix, and X� is the restored matrix using the observed entities of Xref.

For a fair comparison, the decomposition parameter d of D-N, LRMF as well as TQNMC is chosen to be


1.25r��. For PAM, we try different values of r to get its best performance.

The average phase transition results are displayed in Fig 3. For a better visualization, we show the RRSE

versus OR and rank. When the ORs are low, the RRSEs obtained by D-N are very large. For PAM, under

low OR with large r�, the reconstruction error is also large. The RRSEs of TQNMC are included in all cases

for the purpose of easy comparison. It is clear that the TQNMC provides the minimum RRSE, indicating

its superiority over other competing schemes.

4.2. Choice of d

One key parameter in our algorithm is d, which should be slightly larger than the rank of the target

matrix. For synthetic data in Section 4.1, the true rank is known, and we set d � 
1.25r��. While in some

applications, the rank is unknown. In this subsection, we provide a rule of thumb to choose d for unknown

rank situations.

The low-rank assumption in matrix completion requires the rank to be far smaller than min�m,n�.
Generally, “far smaller” means that the rank and min�m,n� are at least not in the same order of magnitude.

Therefore, we suggest d � 0.1 � min�m,n�. We perform matrix completion using synthetic matrices of

r� � 10,15 with dimensions 200� 200. The RRSE versus d is plotted in Fig. 4 at OR = 0.5. We see that the

RRSEs are already very small for d � 20, which corroborates our suggestion.

On the other hand, image data are of approximately low rank [20], and thus the suggestion d � 0.1 �

min�m,n� for exact low-rank matrix might not attain excellent recovery performance. Then, we investigate
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Image
OR 0.3 0.5 0.7

Method RRSE PSNR (dB) SSIM Time RRSE PSNR (dB) SSIM Time RRSE PSNR (dB) SSIM Time

Airplane D-N 0.1074 22.15 0.6032 0.52 0.0678 26.15 0.7923 0.55 0.0425 30.19 0.8982 0.56

WNNM 0.1369 20.04 0.4070 11.81 0.0855 24.13 0.6230 8.13 0.0536 28.19 0.7866 8.65

SpM 0.1009 22.69 0.5905 5.98 0.0659 26.39 0.7778 8.31 0.0426 30.18 0.8793 10.50

PAM 0.1318 20.37 0.5036 1.37 0.0906 23.63 0.6456 3.75 0.0602 27.18 0.7784 7.48

LRMF 0.1075 22.14 0.5552 1.88 0.0670 26.25 0.7527 2.82 0.0431 30.08 0.8717 7.69

Proposed 0.1028 22.53 0.6382 2.35 0.0652 26.49 0.7970 4.57 0.0410 30.51 0.8863 5.09

Baboon D-N 0.1592 21.44 0.4749 0.51 0.1256 23.50 0.6450 0.47 0.0990 25.56 0.7625 0.56

WNNM 0.2351 18.05 0.2904 11.89 0.1849 20.14 0.4595 8.21 0.1383 22.66 0.6487 9.21

SpM 0.1703 20.86 0.4238 5.95 0.1329 23.01 0.6068 8.19 0.0978 25.67 0.7689 10.75

PAM 0.1770 20.52 0.3179 1.30 0.1575 21.53 0.4124 1.58 0.1374 22.72 0.5488 5.29

LRMF 0.1777 20.48 0.3933 2.02 0.1378 22.70 0.5633 2.48 0.1041 25.13 0.7487 7.48

Proposed 0.1553 21.65 0.4754 1.97 0.1231 23.67 0.6471 2.58 0.0935 26.06 0.7773 4.65

Facade D-N 0.0818 27.65 0.8492 0.62 0.0567 30.84 0.9190 1.02 0.0399 33.89 0.9562 0.68

WNNM 0.1071 25.31 0.7545 11.64 0.0739 28.54 0.8645 8.25 0.0517 31.64 0.9272 9.02

SpM 0.0791 27.94 0.8515 6.06 0.0571 30.77 0.9118 8.52 0.0453 32.78 0.9411 10.91

PAM 0.0996 25.95 0.7910 1.24 0.0780 28.06 0.8651 2.73 0.0561 30.93 0.9157 6.05

LRMF 0.0790 27.95 0.8454 4.15 0.0565 30.87 0.9129 3.75 0.0397 33.92 0.9528 4.87

Proposed 0.0767 28.21 0.8599 3.34 0.0536 31.32 0.9245 2.58 0.0373 34.47 0.9610 4.28

Sailboat D-N 0.1593 21.08 0.5516 0.52 0.1050 24.70 0.7398 0.48 0.0670 28.59 0.8626 0.55

WNNM 0.2082 18.75 0.3769 11.49 0.1379 22.33 0.5709 8.28 0.0874 26.29 0.7511 8.62

SpM 0.1543 21.35 0.5259 6.19 0.1008 25.05 0.7282 8.71 0.0649 28.87 0.8625 11.13

PAM 0.1873 19.67 0.4341 1.36 0.1377 22.34 0.5868 3.04 0.0926 25.79 0.7399 8.33

LRMF 0.1648 20.78 0.4885 1.90 0.1041 24.77 0.7126 2.85 0.0661 28.72 0.8472 7.83

Proposed 0.1510 21.54 0.5749 2.03 0.0994 25.17 0.7518 3.31 0.0634 29.08 0.8672 4.61

Table 1: Reconstruction results of grayscale images Airplane, Baboon, Facade, and Sailboat under different ORs.

Original Observed D-N

PSNR=21.08dB  SSIM=0.5516

WNNM

PSNR=18.75dB  SSIM=0.3769

SpM

PSNR=21.35dB  SSIM=0.5259

PAM

PSNR=19.67dB  SSIM=0.4341

LRMF

PSNR=20.78dB  SSIM=0.4885

Proposed

PSNR=21.54dB  SSIM=0.5749

Fig. 5: Reconstruction results for image Sailboat under random loss at OR = 0.3. Top to bottom, left to right correspond to

original image, observed image, recovered results by D-N, WNNM, SpM, PAM, LRMF, and TQNMC.

the impact of d on the recovery accuracy for grayscale images with dimensions 256 � 256 at OR = 0.5.

As shown in Fig. 4, a larger d produces a smaller RRSE. As enlarging d increases the computational cost,

d � 100, viz. d � 0.4�min�m,n�, is a suggested choice. As for the effectiveness of this choice for image data,
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Fig. 6: RRSEs, PSNRs, and SSIMs of reconstruction results of Facade under different ORs by D-N, WNNM, SpM, PAM,

LRMF, and TQNMC.

Method

Image
Airplane Baboon Barbara Facade Peppers Sailboat

RRSE D-N 0.0545 0.1000 0.0759 0.0439 0.0721 0.0848

WNNM 0.0658 0.1352 0.0952 0.0545 0.0832 0.1076

SpM 0.0541 0.0992 0.0752 0.0474 0.0684 0.0824

PAM 0.0879 0.1514 0.1141 0.0825 0.1031 0.1346

LRMF 0.0532 0.1040 0.0740 0.0436 0.0670 0.0846

Proposed 0.0518 0.0992 0.0716 0.0408 0.0649 0.0818

PSNR (dB) D-N 28.04 25.47 28.94 33.06 28.57 26.55

WNNM 26.40 22.86 26.97 31.18 27.32 24.49

SpM 28.10 25.54 29.01 32.38 29.02 26.80

PAM 23.89 21.88 25.39 27.57 25.46 22.54

LRMF 28.26 25.13 29.16 33.12 29.20 26.57

Proposed 28.48 25.55 29.45 33.69 29.48 26.87

SSIM D-N 0.8758 0.7819 0.8668 0.9487 0.8670 0.8403

WNNM 0.8113 0.7325 0.8134 0.9267 0.8012 0.7772

SpM 0.8596 0.7870 0.8512 0.9354 0.8509 0.8336

PAM 0.7094 0.4577 0.7216 0.8472 0.7304 0.6535

LRMF 0.8605 0.7743 0.8590 0.9461 0.8581 0.8271

Proposed 0.8804 0.7836 0.8735 0.9543 0.8727 0.8446

Table 2: Reconstruction results of grayscale images in Fig. 2 under text masked observations.

more are detailed in Appendix C.

In summary, when the rank is unknown, we suggest d � 0.1 �min�m,n� for exactly low-rank data, and

d � 0.4 �min�m,n� for images which have approximately low rank.

4.3. Grayscale Image Inpainting

To further investigate the effectiveness of TQNMC, in this subsection, we conduct image inpainting

experiments on the benchmark images in Fig. 2 using different algorithms. In our algorithm, d is chosen as

100. For fairness, d for D-N and LRMF is also set as 100. As for PAM, different ranks are tried, and we

select the one with the best performance. Apart from RRSE, we also include the peak signal-to-noise ratio

(PSNR) and structural similarity index measure (SSIM) [50] as evaluation metrics. These two measures are

determined using the MATLAB built-in commands psnr() and ssim().
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Original Observed D-N

PSNR=28.57dB  SSIM=0.8670

WNNM

PSNR=27.32dB  SSIM=0.8012

SpM

PSNR=29.02dB  SSIM=0.8509

PAM

PSNR=25.46dB  SSIM=0.7304

LRMF

PSNR=29.20dB  SSIM=0.8581

Proposed

PSNR=29.48dB  SSIM=0.8727

Fig. 7: Inpainting results for Peppers under text mask loss. The original image, text-masked image, recovered results by D-N,

WNNM, SpM, PAM, LRMF, and the proposed method are shown successively.

First, we randomly pick certain number of pixels as the observation set. When ORs are 0.3, 0.5, and 0.7,

the RRSEs, PSNRs, and SSIMs of inpainting results for Airplane, Baboon, Facade, and Sailboat utilizing

different methods are listed in Table 1. Under most of the situations, TQNMC realizes the best reconstruction

results. Furthermore, we show the inpainting results by D-N, WNNM, SpM, PAM, LRMF, and TQNMC

for Sailboat at OR = 0.3 in Fig. 5. We can see the recovered image by PAM is a little blurred. Besides,

comparing with TQNMC, the inpainting images acquired by D-N, WNNM, SpM, and LRMF contain more

noise. By contrast, TQNMC can produce more vivid outcome.

Besides, algorithm runtimes are also listed in Table 1. Among them, D-N is the fastest, followed by PAM,

our method and LRMF, while SpM and WNNM are relatively slower. D-N utilizes alternating direction

method of multipliers to solve the matrix completion problem and converges in just a few tens of iterations.

However, it does not consider the presence of dense noise, like Gaussian noise, which is commonly encountered

in a wide range of applications. It is observed from the experimental results that the D-N exhibits poor

performance for synthetic data with Gaussian noise. Both PAM and our method use bilinear factorization,

which is able to decrease the computational cost. However, the performance of PAM relies heavily on

the prior rank information. Tuning the rank for each application scenario is time-consuming. In contrast,

our method only needs the upper bound of rank, viz. the decomposition parameter d. SpM and WNNM

perform SVD on the original target matrix, whereas the proposed method computes SVD on two small

factor matrices. Therefore, our method is faster than SpM and WNNM. This finding further verifies the

effectiveness of our motivation to impose the truncated quadratic norm on two small factor matrices, which

leads to reduced computational cost.
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To further compare the performances of these algorithms under a wide range of ORs, we randomly sample

10% to 80% elements of image Facade and implement MC using D-N, WNNM, SpM, PAM, LRMF, and

TQNMC. The RRSEs, PSNRs, and SSIMs of the restored image versus OR are plotted in Fig. 6. The image

recovered by TQNMC has the smallest RRSE, highest PSNR and SSIM under all ORs.

Then we evaluate the performance of all the algorithms under text mask scenarios. Six images in Fig. 2

are masked by text, and the masked images are employed for MC. The RRSEs, PSNRs, and SSIMs for the

reconstructed images are tabulated in Table 2. TQNMC performs the best among the competing algorithms.

In addition, the recovery results of Peppers are visualized in Fig. 7. WNNM and PAM fail to fill in some

loss pixels and introduce some artefacts. Comparing with D-N, SpM, and LRMF, TQNMC achieves better

performance, and the recovered image is more natural.

5. Conclusion

In this paper, we present an MC algorithm based on minimizing a new matrix rank substitution named

truncated quadratic norm. Taking advantage of factorization approach, we minimize the truncated quadratic

norm of two small factor matrices of the original target matrix. Experimental results on synthetic data and

grayscale images show the excellent performance of the proposed method.

As a future research direction, new rank function surrogates are welcomed to handle various low-rank

approximation problems, not confined to MC. Besides, in practical situations, the observed matrices have

inevitable noise and outliers. Thus, robust TQNMC will be another research task.
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